مسابقة في الثقافة العلمية: مادة الفيزياء الاسم: المدة: ساعة واحدة المورية

This exam is formed of three obligatory exercises in two pages. The use of non-programmable calculator is recommended.

Exercise 1 (7 ½ pts)

Bouncing of a ball

 h_A

Ground

Doc.1

Consider a ball taken as a particle (S) of mass m = 100 g. (S) is suspended from the lower end of

an inextensible massless string, of length 1 m, whose upper end is attached to a fixed point O.

The system [(S) - String] is shifted from its equilibrium position by an angle of 90° , and then (S) is released from rest from point A of height $h_A = 1$ m above the ground. (S) reaches the ground at point C (Doc. 1). Air resistance is neglected during the motion of (S). The aim of this exercise is to study whether (S) is suitable for a certain sports game.

Take:

- the horizontal plane containing C as a reference level for the gravitational potential energy of the system [(S) Earth];
- $g = 10 \text{ m/s}^2$.
- 1) Calculate the kinetic energy KE_A of (S) at A.
- 2) Calculate the gravitational potential energy GPE_A of the system [(S) String Earth] at A.
- 3) Show that the mechanical energy ME_A of the system [(S) String Earth] at A is ME_A = 1 J.
- **4**) The mechanical energy of the system [(S) String Earth] is conserved during the motion of (S) from A to C. Why?
- 5) As (S) reaches the ground at point C, it collides with a plate (P) fixed at the ground. During this collision the system [(S) String Earth] loses 55 % of its mechanical energy, and then (S) bounces back and attains a new maximum height h_B.
 - **5.1**) Calculate the mechanical energy of the system [(S) String Earth] after the collision with the plate (P).
 - **5.2**) Deduce that $h_B = 0.45 \text{ m}$.
- 6) Calculate the ratio $\frac{h_B}{h_A}$.
- 7) The ball (S) is suitable to be used in a certain sports game if the bouncing ratio is $r = \frac{h_B}{h_A} = 0.54$. Deduce whether (S) is suitable for this game.

Exercise 2 $(6 \frac{1}{2} \text{ pts})$

The age of the lunar rocks

The aim of this exercise is to determine the age of the lunar rocks brought back by the Apollo XI astronauts. A sample (A) of this rock is collected. This sample contains certain quantities of the radioactive isotope, potassium-40 ($^{40}_{19}$ K), as well as the product obtained by its disintegration, argon-40 ($^{40}_{18}$ Ar).

- 1) Define radioactivity.
- 2) Indicate the composition (number of protons and number of neutrons) of potassium-40.
- 3) One of the decay equations of potassium-40 is: $^{40}_{19}\text{K} \rightarrow ^{40}_{18}\text{Ar} + ^{A}_{Z}X$. Calculate Z and A indicating the used laws.
- **4)** Indicate the name and the symbol of the emitted particle.
- 5) The half-life (period) of potassium-40 is: $T = 1.25 \times 10^9$ years.
 - **5.1**) Define the half-life of a radioactive substance.
 - **5.2**) Given that $m_1 = \frac{1}{8} m_0$, where m_1 is the mass of potassium-40 found in the sample (A) and m_0 is the initial mass of potassium-40 present in the sample (A) when it is formed at $t_0 = 0$. Determine the age of this sample.

Exercise 3 (6 pts)

Electric energy produced in a nuclear power plant

A nuclear power plant generates electricity from the nuclear energy produced inside its nuclear reactors. Suppose that the nuclear reaction that takes place inside a reactor is:

$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{144}_{56}Ba + {}^{89}_{36}Kr + 3{}^{1}_{0}n$$

Given:

Particle or Nucleus	${}^{1}_{0}$ n	²³⁵ ₉₂ U	¹⁴⁴ ₅₆ Ba	⁸⁹ ₃₆ Kr
Mass in u	1.008	234.994	143.922	88.917

Speed of light in vacuum $c = 3 \times 10^8 \text{ m/s}$; $1u = 1.66 \times 10^{-27} \text{ kg}$; $1\text{MeV} = 1.6 \times 10^{-13} \text{ J}$.

- 1) The above nuclear reaction is fission. Justify.
- 2) Show that the loss of mass in this reaction is $\Delta m = 0.139 \text{ u}$.
- 3) Determine, in joules, the energy E liberated by this reaction.
- 4) Show that the value of this energy in MeV is $E \cong 129.8$ MeV.
- 5) Knowing that 34% of the nuclear energy E is transformed into electrical energy E', calculate E' in MeV.

أسس التصحيح – أنكليزي مسابقة في الثقافة العلمية: مادة الفيزياء

Exercise 1 (7 ½ pts)

Bouncing of a ball

Part		Answer	Mark
	1	$KE_A = \frac{1}{2} mv^2 = 0 \text{ m/s}$	
,	2	$GPE_A = mgh_A = 0.1 \times 10 \times 1 = 1 J$	
$3 \qquad ME_{A} = KE_{A} + GPE_{A} = 0 + 1 = 1 J$		1	
4	The air resistance is neglected.		0.5
_	5.1	The remaining mechanical energy just after the collision is: $ME' = 0.45 \times 1 = 0.45 \text{ J}$	1
5	5.2	ME' = KE' + GPE' $0.45 = 0 + mgh_B$, $h_B = 0.45$ m	1
	6 $r = \frac{h_B}{h_A} = r = \frac{0.45}{1} = 0.45$		1
7 No, since $r \neq 0.54$		1	

Exercise 2 (6 $\frac{1}{2}$ pts)

The age of the lunar rocks

Exercise 2 (0 /2 pts)			
Pa	art	Answer	
	1	The radioactivity is a spontaneous transformation of a nucleus into another one, with emission of radioactive radiation.	
	2	Number of protons $Z = 19$, number of neutrons $N = 21$	
•	3	According to the law of conservation of mass number : $40 = 40 + A$; $A = 0$ According to the law of conservation of atomic number: $19 = 18 + Z$; $Z = 1$ ${}^{40}_{19}K \rightarrow {}^{40}_{18}Ar + {}^{0}_{+1}X$	0.5 0.5
4	4	Name : Positron Symbol : $_{+1}^{0}$ e	
	5.1	The half-life of a radioactive substance is the time after which half of the radioactive substance is disintegrated.	1
5	5.2	$\frac{m_i}{m_f} = 2^n, \frac{m_i}{\frac{1}{8}m_i} = 2^n, 2^3 = 2^n, n = 3$ Therefore: $t = nT = 3 \times 1.25 \times 10^9 \text{ years} = 3.75 \times 10^9 \text{ years}$	2

Exercise 3 (6 pts)

Electric energy produced in a nuclear power plant

Part	Answer	Mark
1	This is a provoked nuclear reaction in which a heavy nucleus is divided into two lighter nuclei under the impact of a neutron.	1
2	$\Delta m = m_{before} - m_{after} = (234.994 + 1.008) - (143.922 + 88.917 + 3 \times 1.008)$ Then : $\Delta m = 0.139$ u	1
3	$\begin{split} E &= \Delta m \times c^2 \\ \Delta m &= 0.139 \times 1.66 \times 10^{-27} = 0.2307 \times 10^{-27} \text{ kg} \\ E &= 0.2307 \times 10^{-27} \times (3 \times 10^8)^2 = 2.0766 \times 10^{-11} \text{ J} \end{split}$	2
4	$E = 2.0766 \times 10^{-11} / 1.6 \times 10^{-13} = 129.79 \text{ MeV} \approx 129.8 \text{ MeV}$	1
5	$E' = 0.34 \times 129.8 \text{ MeV} = 44.132 \text{ MeV}$	1