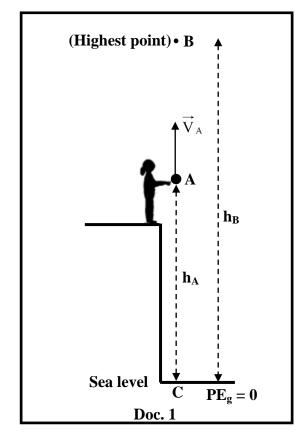
الاسم: الرقم:

مسابقة في الثقافة العلمية - مادة الفيزياء المدة ساعة واحدة

### This exam is formed of three exercises in two pages. The use of non-programmable calculator is recommended


## Exercise 1: (7 ½ points)

### Mechanical energy

A girl standing on a platform throws a stone, considered as a particle of mass m = 0.1 kg, vertically upwards from point A found at a height  $h_A = 30$  m above sea level. The stone is launched from point A with a speed  $V_A = 12$  m/s, reaches its maximum height at point B, and then it falls down to reach point C at sea level (Doc. 1).

#### Take:

- the sea level as a gravitational potential energy reference for the system [stone, Earth];
- $g = 10 \text{ m/s}^2$ .
- 1- Calculate, at point A, at the launching instant:
  - **1-1**) the kinetic energy of the stone;
  - **1-2)** the gravitational potential energy of the system [stone, Earth];
  - **1-3**) the mechanical energy of the system [stone, Earth].
- **2-** In this part, air resistance is neglected.
  - **2-1**) Specify the value of the mechanical energy of the system [stone, Earth] at point B.
  - 2-2) Determine the maximum height h<sub>B</sub> reached by the stone above sea level.
  - **2-3**) Determine the speed V<sub>C</sub> of the stone as it reaches point C.



- **3-** In reality air resistance is not neglected. The stone reaches point C with a speed  $V'_C = 21$  m/s.
  - **3-1)** Calculate the new value of the mechanical energy of the system [stone, Earth] at point C.
  - 3-2) Calculate the decrease in the mechanical energy of the system [stone, Earth] between points A and C.
  - **3-3**) In what form of energy does this decrease in mechanical energy appear?

### Exercise 2: (6 ½ points)

### The americium-241 nucleus

The americium nucleus <sup>241</sup><sub>95</sub>Am is a radioactive nucleus which is usually used in archeology.

- 1- Indicate the number of protons and that of nucleons in the nucleus of americium  $_{95}^{241}\mathrm{Am}$ .
- **2-** The reaction of disintegration of americium  $^{241}_{95}$ Am is given by :

$$^{241}_{95}$$
Am  $\rightarrow ^{237}_{93}$ Np +  $^{A}_{7}$ X +  $\gamma$ 

- **2-1**) Define radioactivity.
- **2-2)** Calculate A and Z indicating the used laws.
- **2-3**) Indicate the name and the symbol of the emitted particle  ${}_{Z}^{A}X$ .
- **2-4**) This disintegration is accompanied with the emission of  $\gamma$  radiation. Indicate:
  - **2-4-1**) the cause of the emission of the  $\gamma$  radiation;
  - **2-4-2**) the nature of the  $\gamma$  radiation.
- **3-** The energy liberated due to this disintegration of the americium-241 nucleus is E = 5.63 MeV. Calculate, in kg, the mass defect  $\Delta m$  due to this disintegration.

Given:

1 MeV =  $1.6 \times 10^{-13}$  J; speed of light in vacuum  $c = 3 \times 10^8$  m/s.

## **Exercise 3:** (6 points)

#### Mars

Mars, the red planet, is the fourth planet according to its average distance from the Sun.

It is a terrestrial planet which can be observed by the naked eye.

The period of revolution of Mars is  $T_M = 1.881$  years, whereas that of Earth is  $T_E = 1$  year = 365.25 days.

#### Doc. 2

- **1-** Name the terrestrial planets of our solar system.
- **2-** Pick out from document 2 an indicator which shows that Mars:
  - **2-1**) is a rocky planet;
  - **2-2**) contains large quantities of iron oxide in the rocks and stones scattered on its surface.
- **3-** Document 2 indicates the periods of revolution of Mars and Earth.
  - **3-1**) What does the « period of revolution » of a planet represent?
  - **3-2)** Calculate, in days, the period of revolution of Mars.
  - **3-3**) Using the periods of revolution of Mars and Earth, specify which of the two planets is closer to the Sun.
  - **3-4**) State Kepler's law which confirms the answer of question (3-3).

## اسس التصحيح - فيزياء فرعا: الاجتماع والاقتصاد والآداب والإنسانيات

وزارة التربية والتعليم العالي المديريّـة العامة للتربية دائرة الامتحانات الرسمية

## مسابقة في الثقافة العلمية ـ مادة الفيزياء أسس التصحيح

# Exercise 1: (7 points)

# **Mechanical energy**

| Part |     | Answer                                                                                                                                                                                                                           | Grade               |
|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1    | 1-1 | $KE_{(A)} = \frac{1}{2} \text{ m V}_{A}^{2} = \frac{1}{2} \times 0.1 \times (12)^{2} = 7.2 \text{ J}$                                                                                                                            | 1                   |
|      | 1-2 | $PE_{g(A)} = mgh_A = 0.1 \times 10 \times 30 = 30 \text{ J}$                                                                                                                                                                     | 1                   |
|      | 1-3 | $ME_{(A)} = KE_{(A)} + PE_{g(A)} = 7.2 + 30 = 37.2 \text{ J}$                                                                                                                                                                    | 1                   |
|      | 2-1 | $ME_B = ME_A$<br>because air resistance is neglected<br>Then, $ME_B = 37.2 \text{ J}$                                                                                                                                            | 0.25<br>0.25<br>0.5 |
| 2    | 2-2 | $\begin{aligned} ME_B &= KE_B + P.E_{g(B)} \\ But \ KE_B &= 0 \ (Stone \ is \ at \ maximum \ height) \\ Then, \ ME_B &= PE_{g(B)} = mg \ h_B \\ 37.2 &= 0.1 \times 10 \times h_B \ ; \ h_B = 37.2 \ m \end{aligned}$             | 0.25<br>0.25<br>0.5 |
|      | 2-3 | $\begin{split} ME_C &= KE_C + PE_{(g)C} \\ But \ PE_{(g)C} &= 0 \ (Stone \ is \ at \ reference \ level) \\ Then, \ ME_C &= KE_C = 37.2 \ J \\ 37.2 &= \frac{1}{2} \times 0.1 \times \ V_C^2 \ ; \ V_C = 27.27 \ m/s \end{split}$ | 0.25<br>0.25<br>0.5 |
| 3    | 3-1 | $\begin{split} ME_{new} &= KE_{new} + PE_{(g)  sea  level} \\ But \ PE_{(g)  sea  level} &= 0  (On  the  reference  level) \\ ME_{new} &= \frac{1}{2} \times 0.1 \times (21)^2 = 22.05  J \end{split}$                           | 0.5                 |
|      | 3-2 | The mechanical energy decreases by: $ME_A - ME_C = 37.2 - 22.05 = 15.15 \text{ J}$                                                                                                                                               | 0.5                 |
|      | 3-3 | The form is thermal energy                                                                                                                                                                                                       | 0.5                 |

# Exercise 2 (6½ points) The americium-241 nucleus

| Question |     |       | Answers                                                                                                                          | Mark               |
|----------|-----|-------|----------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1        |     |       | The number of protons is $Z = 95$<br>The number of nucleons is $A = 241$                                                         | 0.5<br>0.5         |
|          | 2-1 |       | Radioactivity is a spontaneous transformation of a nucleus into another, with emission of radioactive radiation.                 | 1                  |
|          | 2-2 |       | Laws of conservation of mass number and charge number (Soddy's laws) $241 = 237 + A$ , then $A = 4$ $95 = 93 + Z$ , then $Z = 2$ | 0.25<br>0.5<br>0.5 |
| 2        | 2-3 |       | Helium nucleus<br>Symbol : ${}_{Z}^{A}X = {}_{2}^{4}He$                                                                          | 0.25<br>0.5        |
|          | 2-4 | 2-4-1 | Gamma radiation is emitted due to the downward transition (de-<br>excitation) of the daughter nucleus $^{237}_{93}$ Np           | 0.5                |
|          |     | 2-4-2 | Electromagnetic radiation                                                                                                        | 0.5                |
|          |     |       | $E = \Delta m c^2$                                                                                                               | 0.5                |
|          | 3   |       | $\Delta m = \frac{E}{c^2}$ ; $\Delta m = \frac{5.63 \times 1.6 \times 10^{-13}}{\left(3 \times 10^8\right)^2}$                   | 0.5                |
|          |     |       | $= 1.00088 \times 10^{-29} \text{ kg}$                                                                                           | 0.5                |

# Exercise 3 (6 points)

## Mars

| Qu | estion | Answer                                                                                                                              | Mark       |
|----|--------|-------------------------------------------------------------------------------------------------------------------------------------|------------|
|    | 1      | Mercury, Venus, Earth and Mars                                                                                                      | 1          |
| 2  | 2-1    | It is a terrestrial planet                                                                                                          | 0.5        |
|    | 2-2    | The red planet                                                                                                                      | 0.5        |
|    | 3-1    | The period of revolution is the duration (or time needed) of one complete revolution of the planet around the Sun.                  | 1          |
| 3  | 3-2    | $T_M = 1.881 \times 365.25 = 687.035 \text{ days.}$                                                                                 | 1          |
|    | 3-3    | $T_M = 1.881 \text{ years } > T_E = 1 \text{ year}$<br>Therefore, the Earth is closer to the Sun.                                   | 0.5<br>0.5 |
|    | 3-4    | Statement of Kepler's 3 <sup>rd</sup> law: The period of revolution of the planet increases with the average distance from the Sun. | 1          |