دورة الـعام		وزارة التّربية والّْلّعليم
	فرعا: الاجتماع والاقتصاد والآداب والإنسـانيـات	المديريّة العامّة للتُّربية دائرة الامتحاتات الرَّسميّة
الإسـم :	مادة : الفبزيّاء	
الرقم :	المدة : ســاعة واحدة	

This exam is formed of three exercises in two pages.

The use of non-programmable calculator is recommended.

Exercise 1 (7 points)

Mechanical energy

Consider a track ABC situated in a vertical plane as shown in document 1.
The track $A B C$ is formed of two parts:
$>$ an inclined part AB;
$>$ a horizontal part BC of length $\mathrm{BC}=2 \mathrm{~m}$.
A solid (S), considered as a particle of mass $m=0.1 \mathrm{~kg}$, is released from rest from point A.
The solid (S) is submitted to a friction force, of constant magnitude f , only along the path BC .
The horizontal plane passing through BC is taken as a reference level for gravitational potential energy.

Doc. 1

Given:

- The height of point A relative to the reference level is: $\mathrm{h}=1.5 \mathrm{~m}$;
- $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

1) At point A :

1-1) Calculate the value of the kinetic energy $\mathrm{KE}_{(\mathrm{A})}$ of the solid (S).
1-2) Calculate the value of the gravitational potential energy $\mathrm{PEg}_{(\mathrm{A})}$ of the system [(S) - Earth].
1-3) Deduce the value of the mechanical energy $\mathrm{ME}_{(\mathrm{A})}$ of the system [(S) - Earth].
2) The solid (S) reaches point B with a speed V_{B}.

2-1) The mechanical energy of the system [(S) - Earth] is conserved between A and B. Why?
2-2) Deduce the value of the mechanical energy $\mathrm{ME}_{(\mathrm{B})}$ of the system [(S) - Earth] at point B.
2-3) Determine the speed V_{B}.
3) The solid (S) continues its motion along $B C$ and reaches point C with a zero speed $\left(\mathrm{V}_{\mathrm{C}}=0\right)$.

3-1) Calculate the mechanical energy $\mathrm{ME}_{(\mathrm{C})}$ of the system [(S) - Earth] at point C .
3-2) Calculate f knowing that $\mathrm{ME}_{(\mathrm{B})}-\mathrm{ME}_{(\mathrm{C})}=\mathrm{f} \times \mathrm{BC}$.

Exercise 2 (6.5 points)

Nuclear fusion

If nuclear fusion were controlled in nuclear reactors, it would open prospects for sustainable economic development in the long term. Nuclear fusion usually concerns the hydrogen isotopes: deuterium ${ }_{1}^{2} \mathrm{H}$ and tritium ${ }_{1}^{3} \mathrm{H}$ which may merge to produce a helium nucleus ${ }_{2}^{4} \mathrm{He}$ and a particle ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$.
Given:

$$
1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg} ; \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Nucleus or particle	${ }_{1}^{3} \mathrm{H}$	${ }_{1}^{2} \mathrm{H}$	${ }_{2}^{4} \mathrm{He}$	${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$
Mass (in u)	3.0160	2.0134	4.0015	1.0087

1) The nuclei ${ }_{1}^{2} \mathrm{H}$ and ${ }_{1}^{3} \mathrm{H}$ are isotopes. Why?
2) The fusion of ${ }_{1}^{2} \mathrm{H}$ and ${ }_{1}^{3} \mathrm{H}$ needs a very high temperature. Give an approximate value of this temperature.
3) The equation of the fusion reaction between deuterium and tritium is: ${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$.

3-1) Calculate Z and A , indicating the laws used.
3-2) Name the emitted particle.
3-3) Show that the mass defect of this reaction is: $\Delta \mathrm{m}=0.0192 \mathrm{u}$.
3-4) Calculate the energy E liberated by this reaction.
3-5) This energy E is liberated by the fusion of one nucleus of deuterium and one nucleus of tritium of total mass of $8.35 \times 10^{-24} \mathrm{~g}$. Show that the energy liberated by the fusion of 1 g of a mixture containing equal numbers of deuterium and tritium nuclei is $\mathrm{E}_{1}=3.4353 \times 10^{11} \mathrm{~J}$.
4) The energy liberated by the fission of 1 g of uranium-235 is $\mathrm{E}_{2}=8.2 \times 10^{10} \mathrm{~J}$. Deduce an advantage of nuclear fusion over nuclear fission.
5) Give another advantage of nuclear fusion over nuclear fission.

Exercise 3 (6.5 points)

The solar system
Document 1 represents a simplified figure of our solar system.

1) The planet " A " is the closest planet to the Sun.

1-1) Name this planet.
1-2) Indicate the group of planets to which this planet belongs.
1-3) Indicate two common properties among the planets of this group.
2) The planets "B" and "Neptune" belong to the same group of planets.

2-1) Name the planet " B ".
2-2) Indicate the group of planets to which these two planets belong.
3) The period of revolution of planet " A " around the Sun is T_{A} and that of planet " B " is T_{B}.

Compare T_{A} and T_{B}. Justify by stating the convenient law.
4) A belt of solid objects exists between the orbits of Mars and Jupiter. Name these objects.
5) Document 1 shows that most of the planets orbit the Sun in almost the same plane. Name this plane.
6) Document 1 shows that the trajectories of the planets around the Sun are not circular.

6-1) Indicate the shape of the trajectories described by the planets.
6-2) Name the scientist who set out the law related to the shape of these trajectories.

Mechanical energy

Question		Answer	Mark
1	1-1	$\mathrm{KE}(\mathrm{~A})=\frac{1}{2} \mathrm{~m} \mathrm{~V}_{\mathrm{A}}^{2}=\frac{1}{2} \times 0.1 \times 0=0 \mathrm{~J}$	0.5
	1-2	$\begin{aligned} & \mathrm{PEg}_{(\mathrm{A})}=\mathrm{mg} \mathrm{~h} \\ & \mathrm{PEg}_{(\mathrm{A})}=0.1 \times 10 \times 1.5=1.5 \mathrm{~J} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
	1-3	$\begin{aligned} & \mathrm{ME}_{(\mathrm{A})}=\mathrm{PEg}_{(\mathrm{A})}+\mathrm{KE}_{(\mathrm{A})} \\ & \mathrm{ME}_{(\mathrm{A})}=1.5+0=1.5 \mathrm{~J} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$
2	2-1	The mechanical energy is conserved between A and B since there is no friction.	0.5
	2-2	$\mathrm{ME}_{(\mathrm{B})}=\mathrm{ME}_{(\mathrm{A})}=1.5 \mathrm{~J}$	0.5
	2-3	$\mathrm{ME}_{(\mathrm{B})}=\operatorname{PEg}_{(\mathrm{B})}+\mathrm{KE}_{(\mathrm{B})}$ $\operatorname{PEg}_{(\mathrm{B})}=0 \mathrm{~J}$ since B is at the reference level of gravitational potential energy. $\operatorname{ME}_{(B)}=0+\frac{1}{2} \mathrm{mV}_{\mathrm{B}}^{2} \quad \text {, so } \quad \mathrm{V}_{\mathrm{B}}=\sqrt{\frac{2 \mathrm{ME}_{(\mathrm{B})}}{\mathrm{m}}} \quad \text {, then } \quad \mathrm{V}_{\mathrm{B}}=\sqrt{\frac{2 \times 1.5}{0.1}}=5.5 \mathrm{~m} / \mathrm{s}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$
3	3-1	$\mathrm{ME}_{(\mathrm{C})}=\operatorname{PEg}_{(\mathrm{C})}+\mathrm{KE}_{(\mathrm{C})}$ $\mathrm{PEg}_{(\mathrm{C})}=0 \mathrm{~J}$; since C is at the reference level of gravitational potential energy and $\mathrm{KE}_{(\mathrm{C})}=0 \mathrm{~J}$ since $\mathrm{V}_{\mathrm{C}}=0$. $\mathrm{ME}_{(\mathrm{C})}=0+0=0 \mathrm{~J}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$
	3-2	$\mathrm{ME}_{(\mathrm{B})}-\mathrm{ME}_{(\mathrm{C})}=\mathrm{f} \times \mathrm{BC} \text {, so } \mathrm{f}=\frac{\mathrm{ME}_{(\mathrm{B})}-\mathrm{ME}_{(\mathrm{C})}}{\mathrm{BC}} \text {, then } \mathrm{f}=\frac{1.5-0}{2}=0.75 \mathrm{~N}$	1

Exercise 2 (6.5 points)

Nuclear Fusion

Question	Answer	Grade
1	These nuclei have same charge number but different mass number.	1
2	100 million degrees	0.5
3.1	Conservation of mass number: $2+3=4+\mathrm{A}$, then $\mathrm{A}=1$ Conservation of the charge number: $1+1=2+Z$, then $Z=0$ (or student can say Soddy's laws)	1
3.2	Neutron	0.5
$3{ }^{3} 3.3$	$\begin{aligned} & \Delta \mathrm{m}=\Delta \mathrm{m}=\mathrm{m}_{\text {before }}-\mathrm{m}_{\text {after }} \\ & \Delta \mathrm{m}=\mathrm{m}\left({ }_{1}^{2} \mathrm{H}\right)+\mathrm{m}\left({ }_{1}^{3} \mathrm{H}\right)-\mathrm{m}\left({ }_{2}^{4} \mathrm{He}\right)-\mathrm{m}\left({ }_{0}^{1} \mathrm{n}\right) \\ & \Delta \mathrm{m}=(2.0134+3.0160)-(4.0015+1.0087)=0.0192 \mathrm{u} \end{aligned}$	0.75
3.4	$\begin{aligned} & \mathrm{E}=\Delta \mathrm{m} \mathrm{c}^{2} \\ & \text { But } \Delta \mathrm{m}=0.0192 \times 1.66 \times 10^{-27} \mathrm{~kg}=3.1872 \times 10^{-29} \mathrm{~kg} \\ & \mathrm{E}=3.1872 \times 10^{-29} \times 9 \times 10^{16}=2.86848 \times 10^{-12} \mathrm{~J} \end{aligned}$	1
3.5	$\begin{array}{\|l} 8.35 \times 10^{-24} \mathrm{~g} \rightarrow 2.86848 \times 10^{-12} \mathrm{~J} \\ 1 \mathrm{~g} \rightarrow \mathrm{E}_{1} \\ \text { Therefore } \mathrm{E}_{1}=3.4353 \times 10^{11} \mathrm{~J} \end{array}$	0.75
4	$\mathrm{E}_{1}>\mathrm{E}_{2}$, then nuclear fusion yields more energy than nuclear fission	0.5
5	Hydrogen is more abundant than uranium in nature Or: Nuclear fusion does not produce radioactive nuclei	0.5

Part		Answer	Mark
1	1-1	A : Mercury	0.5
	1-2	Group of the inner planet	0.5
	1-3	They are solid planets They have similar dimensions (volume) They have similar mass They have almost same density (similar composition)	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
2	2-1	B :Saturn	0.5
	2-2	Group of the outer planets	0.5
3		$\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\mathrm{B}}$, since planet A is closer to the Sun than planet B . Kepler's third law: The period of revolution of a planet increases with the distance separating it from the Sun.	$\begin{gathered} 0.5 \\ 1 \end{gathered}$
4		Asteroids	0.5
		The plane of the ecliptic	0.5
6	6-1	The form is elliptical	0.5
	6-2	Kepler	0.5

