امتحانات الشَّهادة النَّانويَة العامَة فرعا: الاجتماع والاقتصاد والآداب والإنسـانيات

الإسم : الرقم : مادة : الفيزياء

المدة : ساعة واحدة

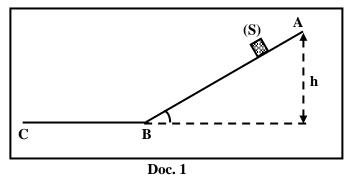
<u>This exam is formed of three exercises in two pages.</u> The use of non-programmable calculator is recommended.

Exercise 1 (7 points)

Mechanical energy

Consider a track ABC situated in a vertical plane as shown in document 1.

The track ABC is formed of two parts:


- ▶ an inclined part AB;
- > a horizontal part BC of length BC = 2 m.

A solid (S), considered as a particle of mass m = 0.1 kg, is

released from rest from point A.

The solid (S) is submitted to a friction force, of constant magnitude f, only along the path BC.

The horizontal plane passing through BC is taken as a reference level for gravitational potential energy.

Given:

- The height of point A relative to the reference level is: h = 1.5 m;
- $g = 10 \text{ m/s}^2$.
- 1) At point A:
 - **1-1**) Calculate the value of the kinetic energy $KE_{(A)}$ of the solid (S).
 - **1-2)** Calculate the value of the gravitational potential energy $PEg_{(A)}$ of the system [(S) Earth].
 - 1-3) Deduce the value of the mechanical energy $ME_{(A)}$ of the system [(S) Earth].
- 2) The solid (S) reaches point B with a speed V_B .
 - 2-1) The mechanical energy of the system [(S) Earth] is conserved between A and B. Why?
 - **2-2**) Deduce the value of the mechanical energy $ME_{(B)}$ of the system [(S) Earth] at point B.
 - **2-3**) Determine the speed V_B .
- 3) The solid (S) continues its motion along BC and reaches point C with a zero speed ($V_C = 0$).
 - **3-1**) Calculate the mechanical energy $ME_{(C)}$ of the system [(S) Earth] at point C.
 - **3-2)** Calculate f knowing that $ME_{(B)} ME_{(C)} = f \times BC$.

Exercise 2 (6.5 points)

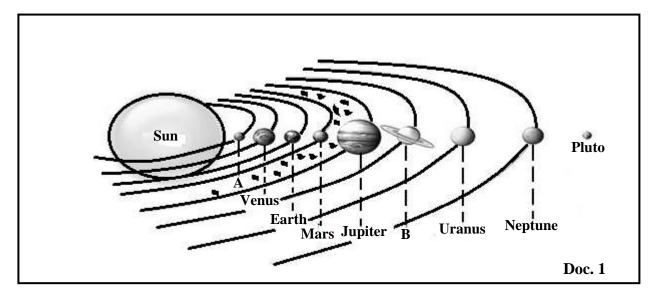
Nuclear fusion

If nuclear fusion were controlled in nuclear reactors, it would open prospects for sustainable economic development in the long term. Nuclear fusion usually concerns the hydrogen isotopes: deuterium ${}_{1}^{2}H$ and tritium ${}_{1}^{3}H$ which may merge to produce a helium nucleus ${}_{2}^{4}He$ and a particle ${}_{Z}^{A}X$. Given:

 $1u = 1.66 \times 10^{-27} \, \text{kg}; \ c = 3 \times 10^8 \, \text{m/s}.$

Nucleus or particle	$^{3}_{1}\mathrm{H}$	$^{2}_{1}\mathrm{H}$	4_2 He	$^{\mathrm{A}}_{\mathrm{Z}}\mathrm{X}$
Mass (in u)	3.0160	2.0134	4.0015	1.0087

1) The nuclei ${}_{1}^{2}$ H and ${}_{1}^{3}$ H are isotopes. Why?


2) The fusion of ${}^{2}_{1}$ H and ${}^{3}_{1}$ H needs a very high temperature. Give an approximate value of this temperature.

- 3) The equation of the fusion reaction between deuterium and tritium is: ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{Z}^{A}X$.
 - **3-1**) Calculate Z and A, indicating the laws used.
 - **3-2**) Name the emitted particle.
 - **3-3**) Show that the mass defect of this reaction is: $\Delta m = 0.0192 \text{ u}$.
 - **3-4**) Calculate the energy E liberated by this reaction.
 - **3-5**) This energy E is liberated by the fusion of one nucleus of deuterium and one nucleus of tritium of total mass of 8.35×10^{-24} g. Show that the energy liberated by the fusion of 1 g of a mixture containing equal numbers of deuterium and tritium nuclei is E₁ = 3.4353×10^{11} J.
- 4) The energy liberated by the fission of 1 g of uranium-235 is $E_2 = 8.2 \times 10^{10}$ J. Deduce an advantage of nuclear fusion over nuclear fission.
- 5) Give another advantage of nuclear fusion over nuclear fission.

Exercise 3 (6.5 points)

The solar system

Document 1 represents a simplified figure of our solar system.

- 1) The planet "A" is the closest planet to the Sun.
 - **1-1**) Name this planet.
 - **1-2**) Indicate the group of planets to which this planet belongs.
 - **1-3)** Indicate two common properties among the planets of this group.
- 2) The planets "B" and "Neptune" belong to the same group of planets.
 - **2-1**) Name the planet "B".
 - **2-2**) Indicate the group of planets to which these two planets belong.
- 3) The period of revolution of planet "A" around the Sun is T_A and that of planet "B" is T_B. Compare T_A and T_B. Justify by stating the convenient law.
- 4) A belt of solid objects exists between the orbits of Mars and Jupiter. Name these objects.
- 5) Document 1 shows that most of the planets orbit the Sun in almost the same plane. Name this plane.
- 6) Document 1 shows that the trajectories of the planets around the Sun are not circular.
 - **6-1**) Indicate the shape of the trajectories described by the planets.
 - **6-2**) Name the scientist who set out the law related to the shape of these trajectories.

ercise 1 (7 poin		Answer	
	1-1	KE(A) = $\frac{1}{2}$ m V _A ² = $\frac{1}{2} \times 0.1 \times 0 = 0$ J	0.5
	1-2	$PEg_{(A)} = m g h$	0.5
1		$PEg_{(A)} = 0.1 \times 10 \times 1.5 = 1.5 J$	0.5
	1-3	$ME_{(A)} = PEg_{(A)} + KE_{(A)}$	0.5
		$ME_{(A)} = 1.5 + 0 = 1.5 J$	0.5
	2-1	The mechanical energy is conserved between A and B since there is no friction.	0.5
	2-2	$ME_{(B)} = ME_{(A)} = 1.5 \text{ J}$	0.5
2	2-3	$ME_{(B)} = PEg_{(B)} + KE_{(B)}$	0.5
		$PEg_{(B)} = 0$ J since B is at the reference level of gravitational potential energy.	
		$1 \qquad \sqrt{2ME_{(R)}} \qquad \sqrt{2\times1.5}$	0.5
		$ME_{(B)} = 0 + \frac{1}{2} m V_{B}^{2} , \text{ so } V_{B} = \sqrt{\frac{2ME_{(B)}}{m}} , \text{ then } V_{B} = \sqrt{\frac{2 \times 1.5}{0.1}} = 5.5 \text{ m/s}$	0.5
	3-1	$ME_{(C)} = PEg_{(C)} + KE_{(C)}$	
		$PEg_{(C)} = 0 J$; since C is at the reference level of gravitational potential energy	
3		and $KE_{(C)} = 0 J$ since $V_C = 0$.	0.5
		$ME_{(C)} = 0 + 0 = 0 J$	0.5
	3-2	$ME_{(B)} - ME_{(C)} = f \times BC \text{ , so } f = \frac{ME_{(B)} - ME_{(C)}}{BC} \text{ , then } f = \frac{1.5 - 0}{2} = 0.75 \text{ N}$	1

Exercise 2 (6.5 points)

Nuclear Fusion

Question		Answer	Grade
1		These nuclei have same charge number but different mass number.	1
	2	100 million degrees	0.5
	3.1	Conservation of mass number: $2 + 3 = 4 + A$, then $A = 1$ Conservation of the charge number: $1 + 1 = 2 + Z$, then $Z = 0$ (or student can say Soddy's laws)	1
	3.2	Neutron	0.5
3	3.3	$\Delta m = \Delta m = m_{before} - m_{after}$ $\Delta m = m({}^{2}_{1}H) + m({}^{3}_{1}H) - m({}^{4}_{2}He) - m({}^{1}_{0}n)$ $\Delta m = (2.0134 + 3.0160) - (4.0015 + 1.0087) = 0.0192 u$	0.75
	3.4	$E = \Delta m c^{2}$ But $\Delta m = 0.0192 \times 1.66 \times 10^{-27} \text{ kg} = 3.1872 \times 10^{-29} \text{ kg}$ $E = 3.1872 \times 10^{-29} \times 9 \times 10^{16} = 2.86848 \times 10^{-12} \text{ J}$	1
	3.5	$\begin{array}{rcl} 8.35 \times 10^{-24} g & \rightarrow & 2.86848 \ \times 10^{-12} J \\ & 1 g \ \rightarrow & E_1 \\ \\ Therefore & E_1 = 3.4353 \times 10^{11} J \end{array}$	0.75
4 $E_1 > E_2$, then nuclear fusion yields more energy		$E_1 > E_2$, then nuclear fusion yields more energy than nuclear fission	0.5
	5	Hydrogen is more abundant than uranium in nature Or: Nuclear fusion does not produce radioactive nuclei	0.5

Part		Answer	Mark
	1-1	A : Mercury	0.5
	1-2	Group of the inner planet	0.5
1	1-3	They are solid planets They have similar dimensions (volume) They have similar mass They have almost same density (similar composition)	0.5 0.5
2	2-1	B :Saturn	0.5
	2-2	Group of the outer planets	0.5
	$\begin{array}{c} \textbf{3} \\ \textbf{T}_A < \textbf{T}_B \text{, since planet A is closer to the Sun than planet B.} \\ \text{Kepler's third law: The period of revolution of a planet increases with the distance separating it from the Sun.} \end{array}$		0.5 1
4 Asteroids		Asteroids	0.5
5		The plane of the ecliptic	0.5
	6-1	The form is elliptical	0.5
6	6-2	Kepler	0.5