امتحانات الشهادة الثانوية العامة فرع علوم الحياة

الاسم: الرقم: مسابقة في مادة الفيزياء المدة: ساعة ونصف

This exam is formed of three obligatory exercises in three pages. The use of non-programmable calculator is recommended.

Exercise 1 (7 pts)

Mechanical oscillator

A mechanical oscillator is constituted of a block (S) of mass M and a spring of negligible mass and force constant k.

The spring, placed horizontally, is connected from one of its extremities to a fixed support A. (S) is attached to the other extremity of the spring and it may slide without friction on a horizontal surface (Doc. 1).

The aim of this exercise is to determine the values of M and k.

At equilibrium, the center of mass G of (S) coincides with the origin O of the x-axis.

(S) is shifted from its equilibrium position in the positive direction and then released without initial velocity

at the instant $t_0 = 0$. Thus, (S) performs mechanical oscillations. At an instant t, the abscissa of G is $x = \overline{OG}$

and the algebraic value of its velocity is $v = x' = \frac{dx}{dt}$.

The horizontal plane containing G is considered as a reference level for gravitational potential energy.

- 1) Write, at an instant t, the expression of the mechanical energy ME of the system (Oscillator, Earth) in terms of x, M, k and v.
- 2) Establish the second order differential equation in x that governs the motion of G.
- 3) Deduce that the expression of the proper (natural) period of the oscillations is $T_1 = 2\pi \sqrt{\frac{M}{L}}$.
- 4) An appropriate device traces x as a function of time (Doc. 2). Referring to document 2, indicate:
 - **4.1**) the type of oscillations of G;
 - **4.2**) the amplitude X_m of the oscillations;
 - **4.3**) the value of T_1 .
- 5) The same experiment is repeated by putting on (S) an object, considered as a particle, of mass m = 50 g. The duration of 10 oscillations becomes $\Delta t = 3.67$ s.
 - 5.1) Write the expression of the new proper (natural) period T₂ of the oscillations in terms of k, M and m.
 - **5.2**) Using the expressions of T_1 and T_2 , show that

$$k = \frac{4 \pi^2 m}{T_2^2 - T_1^2} .$$

5.3) Determine the values of k and M.

Exercise 2 (7 pts)

Charging and discharging a capacitor

The aim of this exercise is to study the charging and the discharging of a capacitor.

The switch K is initially at position (0) and the capacitor is uncharged.

For this purpose, we set up the circuit of document 3 that includes:

- an ideal battery of electromotive force E = 10 V;
- two resistors of resistances $R_1 = R_2 = 4 k\Omega$; •

At an instant t, plate B of the capacitor carries a charge q and the circuit carries a

An appropriate device allows us to display

the voltage $u_{AB} = u_{R_1}$ across the resistor

Curves (a) and (b) of document 4 show these voltages as functions of time.

1.2) The time constant of this circuit is

the value of τ_1 .

1.2.2) Deduce the value of C.

1.1) Curve (a) represents u_{R_1} and curve (b)

1.2.1) Using document 4, determine

and the voltage $u_{BD} = u_{C}$ across the

represents u_C. Justify.

given by $\tau_1 = R_1 C$.

- a capacitor of capacitance C;
- a switch K.

current i.

capacitor.

1) Charging the capacitor

the capacitor starts.

↓u (V) 10 (b 8 6 4 (a) 2 t (s) A 0.4 1.2 1.6 0.8 2 Doc. 4

1.3) Calculate the time (t_1) needed by the capacitor to practically become completely charged.

2) Discharging the capacitor

- The capacitor is completely charged. At an instant taken as a new initial time $t_0 = 0$, the switch K is turned to position (2), and the capacitor starts discharging through the resistors of resistances R_1 and R_2 . At an instant t the circuit carries a current i (Doc. 5).
- 2.1) Show, using the law of addition of voltages, that the differential equation which governs u_C is:

RC
$$\frac{du_{\rm C}}{dt}$$
 + $u_{\rm C}$ = 0 where R = R₁ + R₂.

2.2) The solution of this differential equation is of the form: $u_c = E e^{\overline{\tau_2}}$ where τ_2 is the time constant of the circuit of document 5.

Determine the expression of τ_2 in terms of R and C.

2.3) Verify that the time needed by the capacitor to practically become completely discharged is $t_2 = 5\tau_2$.

3) Duration of charging and discharging the capacitor

Show, without calculation, that (t_2) is greater than (t_1) .

Exercise 3 (6 pts)

Characteristics of a coil

In order to determine the inductance L and the resistance r of a coil, we connect it in series with a resistor of resistance $R = 30 \Omega$ across a function generator (G) providing an alternating sinusoidal voltage of angular frequency ω .

The circuit thus carries an alternating sinusoidal current of expression $i = I_m \sin(\omega t)$ (Doc. 6).

An oscilloscope allows us to display the voltage $u_{AB} = u_R$ across the

resistor and the voltage $u_{BC} = u_L$ across the coil.

The obtained waveforms are shown in document 7. The adjustments of the oscilloscope are:

- vertical sensitivity for both channels: $S_v = 2 V/div$;
- horizontal sensitivity: $S_h = 0.4 \text{ ms/div}$.
- 1) The voltage u_{R} represents the image of i. Why?
- 2) Referring to document 7, specify which of the curves, (a) or (b), leads the other.
- **3**) Deduce that curve (a) corresponds to u_{AB} .
- 4) Using document 7, determine:
 - **4.1**) the angular frequency ω ;
 - **4.2**) the maximum value I_m of i;
 - **4.3**) the phase difference ϕ between $u_{\rm L}$ and i.
- **5)** Prove that $u_L = 6.8 \sin(\omega t + 0.4\pi)$ (SI).
- 6) Knowing that the voltage across the coil is given
 - by $u_L = r i + L \frac{di}{dt}$, write the expression of u_L in terms of r, L, ω and t.
- 7) Using the two expressions of u_L found in parts 5 and 6 and by giving «ωt» two particular values, determine the values of L and r.

دورة العام 2021 العاديّة الاثنين 26 تموز 2021

Exercise 1 (7 pts)

مسابقة في مادة الفيزياء

المدة: ساعة ونصف

الاسم: الرقم:

Mechanical oscillator

Part		Answer	Note
1		$ME = KE + EPE = \frac{1}{2} M v^{2} + \frac{1}{2} kx^{2}$	0.5
2		The sum of the works done by the non-conservative forces is zero, then the mechanical energy is conserved. (Or: Friction is neglected, then the mechanical energy is conserved). $ME = constant$, then $\frac{dME}{dt} = 0$, so $M v v' + k x x' = 0$, but $v = x'$ and $v' = x''$, hence $v (M x'' + k x) = 0$ $v = 0$ is rejected, then $x'' + \frac{k}{M}x = 0$	1
		The differential equation is of the form: $x'' + \omega_o^2 x = 0$, with $\omega_o = \sqrt{\frac{k}{M}}$ $T_1 = \frac{2\pi}{\omega_o}$; therefore, $T_1 = 2\pi\sqrt{\frac{M}{k}}$	1
	4.1	Free undamped mechanical oscillations	0.5
4	4.2	$X_{\rm m} = 8 \ {\rm cm}$	0.5
	4.3	From the curve: $T_1 = 0.1 \pi s = 0.314 s$	0.5
	5.1	$T_2 = 2 \pi \sqrt{\frac{M+m}{k}}$	0.5
5	5.2	$T_{1}^{2} = 4 \pi^{2} \frac{M}{k} \text{and} T_{2}^{2} = 4 \pi^{2} \left(\frac{M+m}{k}\right)$ $T_{2}^{2} - T_{1}^{2} = 4 \pi^{2} \left(\frac{M+m}{k} - \frac{M}{k}\right) = \frac{4 \pi^{2} m}{k} \text{, so} k = \frac{4 \pi^{2} m}{\left(T_{2}^{2} - T_{1}^{2}\right)}$	1
	5.3	$\begin{split} T_2 &= \frac{3.67}{10} = 0.367 \text{ s} \\ k &= \frac{4 \pi^2 \times 0.05}{0.367^2 - 0.314^2} , \text{ then } k = 54.7 \text{ N/m} \\ T_1^2 &= 4 \pi^2 \frac{M}{k} \text{ , substituting the value of k into this expression gives:} \\ 0.314^2 &= 4 \pi^2 \frac{M}{54.7} ; \text{ therefore, } M = 0.1366 \text{ kg} = 136.6 \text{ g} \end{split}$	0.5 0.5 0.5

Charging and discharging of a capacitor

Part		Answer	Note
1	1.1	Curve (a): $u_{AB} = u_{R_1} = R_1 i$; u_{R_1} is directly proportional to the current in the circuit. During the charging process, the current decreases so u_{R_1} decreases. Curve (b): $u_{BD} = u_C = \frac{q}{C}$; During charging process q increases so u_C increases	0.5 0.5
	1.2.1	At $t = \tau_1$: $u_c = 0.63 E = 6.3 V$ From document 4: $u_c = 6.3 V$ at $t = 0.4 s$, then $\tau_1 = 0.4 s$	1
	1.2.2	$\tau_1 = R_1 C$, so $C = \frac{\tau_1}{R_1} = \frac{0.4}{4000}$, hence $C = 1 \times 10^{-4} F = 100 \ \mu F$	0.5
	1.3	$t_1=5\tau_1=5\times 0.4 \qquad \ , \ then \qquad t_1=\ 2\ s$	0.5
2	2.1	$u_{BD} = u_{BA} + u_{AD}$ $u_{C} = R_{1}i + R_{2}i , \text{ then } u_{C} = (R_{2} + R_{1})i = Ri$ But, $i = -\frac{dq}{dt} = -C\frac{du_{C}}{dt} , \text{ hence } u_{C} = -RC\frac{du_{C}}{dt}$ Therefore, $RC\frac{du_{C}}{dt} + u_{C} = 0$	1.5
	2.2	$u_{c} = E e^{\frac{-t}{\tau_{2}}} , \text{ then } \frac{du_{c}}{dt} = -\frac{E}{\tau_{2}} e^{\frac{-t}{\tau_{2}}}$ Substituting u _c and $\frac{du_{c}}{dt}$ into the differential equation gives: $R C \left(-\frac{E}{\tau_{2}} e^{\frac{-t}{\tau_{2}}}\right) + E e^{\frac{-t}{\tau_{2}}} = 0 , \text{ so } E e^{\frac{-t}{\tau_{2}}} (1 - \frac{R C}{\tau_{2}}) = 0$ $E e^{\frac{-t}{\tau_{2}}} = 0 \text{ is rejected } , \text{ then } 1 - \frac{R C}{\tau_{2}} = 0 , \text{ so } \tau_{2} = R C$	1.5
	2.3	At $t = 5 \tau_2$: $u_c = E e^{\frac{-5\tau_2}{\tau_2}} = E e^{-5} \cong 0$, so the capacitor is practically completely. discharged.	0.5
3		$ t_1 = 5 R_1 C \qquad \text{and} \qquad t_2 = 5 R C = 5 (R_1 + R_2) C \\ (R_1 + R_2) > R_1 \qquad , \text{ then} \qquad t_2 > t_1 $	0.5

Exercise 3 (6 pts)

Characteristics of a coil

Part		Answer	Note
1		$u_R = Ri$, but R is a positive constant , then u_R and i are directly proportional ; therefore, u_R is the image of current.	0.5
2		Curve (b) leads curve (a), since curve (b) becomes maximum before curve (a).	0.5
3		The voltage across the coil u_L leads u_R (or i). Curve (b) leads curve (a), then curve (a) corresponds to $u_R = u_{AB}$.	0.5
4	4.1	$T = 5 \times 0.4 = 2 \text{ ms} = 2 \times 10^{-3} \text{ s}$ $\omega = \frac{2\pi}{T} = \frac{2\pi}{2 \times 10^{-3}} , \text{ hence } \omega = 1000 \text{ π rad/s}$	0.25 0.5
	4.2	Curve (a): $U_{R(max)} = 3 \times 2 = 6 \text{ V}$ $U_{R(max)} = R \times I_m$, then $I_m = \frac{6}{30} = 0.2 \text{ A}$	0.25 0.5
	4.3	$\varphi = \frac{2 \pi d}{D} = \frac{2 \pi \times 1}{5}$, then $\varphi = 0.4 \pi$ rad	0.5
5		From curve (b): $U_{L(max)} = 3.4 \times 2 = 6.8 \text{ V}$, and u_L leads i by $\varphi = 0.4\pi$ rad $u_L = U_{L(max)} \sin(\omega t + \varphi)$; therefore, $u_L = 6.8 \sin(\omega t + 0.4 \pi)$	0.25 0.25
6		$\begin{aligned} u_{L} &= r i + L \frac{di}{dt} = r I_{m} \sin(\omega t) + L I_{m} \omega \cos(\omega t) \\ u_{L} &= 0.2 r \sin(\omega t) + L (0.2) (1000\pi) \cos(\omega t) = 0.2 r \sin(\omega t) + 200\pi L \cos(\omega t) (SI) \\ \underline{Or} \ u_{L} &= 0.2 r \sin(\omega t) + \omega L (0.2) \cos(\omega t) (SI) \end{aligned}$	0.5
	7	6.8 sin (ω t + 0.4 π) = 0.2 r sin (ω t) + 200 π L cos (ω t) For ω t = 0 : 6.8 sin (0.4 π) = 0 + 200 π L , then L = 0.01 H For ω t = $\frac{\pi}{2}$ rad : 6.8 sin ($\frac{\pi}{2}$ + 0.4 π) = 0.2 r + 0 , then r = 10.5 Ω	0.75 0.75