امتحانات الشهادة الثانوية العامة فرع علوم الحياة

الاسم:	مسابقة في مادة الفيزياء	
الرقم:	المدة: ساعتان	

<u>This exam is formed of three obligatory exercises in three pages.</u> <u>The use of non-programmable calculators is recommended.</u>

Exercise 1 (7 points)

Horizontal elastic pendulum

A mechanical oscillator is formed by a block (S) of mass m and a spring of negligible mass and spring constant k. (S) is attached to one end of the spring, and the other end of the spring is connected to a fixed support A. (S) can move without friction on a horizontal surface (Doc. 1).

The aim of this exercise is to determine the values of m and k.

At equilibrium, the center of mass G of (S) coincides with the origin O of the x-axis.

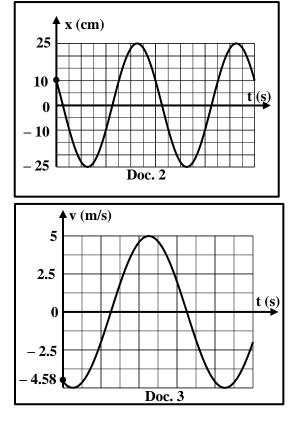
(S) is displaced horizontally in the positive direction.

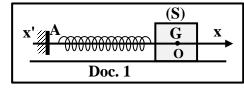
At the instant $t_0 = 0$, the abscissa of G is x_0 and (S) is launched in the

negative direction with an initial velocity $\vec{v_0} = v_0 i$ ($v_0 < 0$) where i is the unit vector of the x-axis.

At an instant t, the abscissa of G is x and the algebraic value of its velocity is $v = x' = \frac{dx}{dt}$.

The horizontal plane containing G is taken as a reference level for gravitational potential energy.


- Write, at an instant t, the expression of the mechanical energy of the system (Oscillator, Earth) in terms of x, m, k and v.
- 2) Establish the second order differential equation in x that governs the motion of (S).
- 3) Deduce the expression of the proper angular frequency ω_0 of the oscillations in terms of m and k.


 4) The solution of the obtained differential equation is: x = X_m sin (ω₀ t + φ), where X_m, ω₀ and φ are constants. Write the expression of v in terms of X_m, ω₀, φ and t.

- 5) Write the expressions of x_0 and v_0 in terms of X_m , ω_0 and φ .
- 6) Deduce that: $X_m = \sqrt{x_0^2 + \frac{v_0^2}{\omega_0^2}}$.
- 7) An appropriate device traces x and v as functions of time as shown in documents 2 and 3 respectively. Referring to documents (2) and (3):
 - **7-1**) specify the type of the oscillations;
 - **7-2**) indicate the values of x_0 , v_0 , X_m and V_m , where V_m is the amplitude of v.
- 8) Deduce that ω_0 is approximately equal to 20 rad/s.
- 9) We repeat the same experiment by replacing the block (S) of mass m by another block (S') of mass m' = 0.8 kg.

The new proper angular frequency is $\omega' = \frac{\omega_0}{2}$.

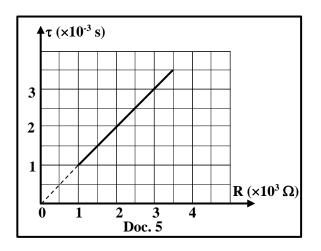
- 9-1) Write the expression of ω' in terms of m' and k.
- **9-2**) Deduce the values of k and m.

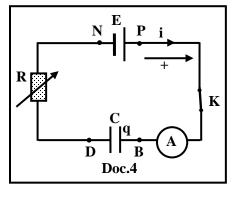
Exercise 2 (7 points) Capacitance of a capacitor

The aim of this exercise is to determine the capacitance C of a capacitor. We set-up the series circuit of document 4.

This circuit includes:

- an ideal battery of electromotive force E = 10 V;
- a rheostat of resistance R;
- a capacitor of capacitance C;
- an ammeter (A) of negligible resistance;
- a switch K.


Initially the capacitor is uncharged. We close the switch K at the


instant $t_0 = 0$. At an instant t, plate B of the capacitor carries a charge q and the circuit carries a current i as shown in document 4.

- 1) Write the expression of i in terms of C and u_C , where $u_C = u_{BD}$ is the voltage across the capacitor.
- 2) Establish the differential equation that governs the variation of u_C.
- 3) The solution of this differential equation is of the form: $u_C = a + b e^{-\tau}$. Determine the expressions of the constants a, b and τ in terms of E, R and C.
- 4) Deduce that the expression of the current is: $i = \frac{E}{R} e^{\frac{-t}{RC}}$.
- 5) The ammeter (A) indicates a value $I_0 = 5$ mA at $t_0 = 0$. Deduce the value of R.
- 6) Write the expression of $u_R = u_{DN}$ in terms of E, R, C and t.
- 7) At an instant t = t₁, the voltage across the capacitor is u_C = u_R.
 7-1) Show that t₁ = R C ℓn 2.
 7-2) Colorate the value of C knowing that t = 1.4 ms

7-2)Calculate the value of C knowing that $t_1 = 1.4$ ms.

- 8) In order to verify the value of C, we vary the value of R. Document 5 represents τ as a function of R.
 8-1) Show that the shape of the curve in document 5 is in agreement with the expression of τ obtained in part 3.
 - 8-2) Using the curve of document 5, determine again the value of C.

Exercise 3 (6 points)

Aspects of Light

The aim of this exercise is to show evidence of the two aspects of light.

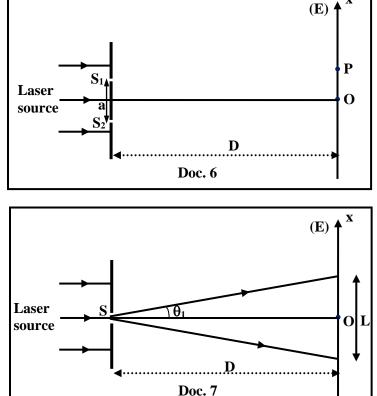
1) First aspect

Consider Young's double-slit experiment. The two thin parallel horizontal slits S_1 and S_2 are separated by a distance a = 0.5 mm.

The screen (E) is placed parallel to the plane of the slits at a distance D = 2 m.

A laser source illuminates the two slits by a monochromatic light of wavelength $\lambda = 600$ nm in

air, under normal incidence.


O is the point of intersection between the

perpendicular bisector of $[S_1S_2]$ and the screen (E). P is a point on the screen having an abscissa

 $x_P = \overline{OP} = 9.6 \text{ mm} (\text{Doc. 6}).$

- **1-1)** Calculate the inter-fringe distance i.
- **1-2)** Specify the nature and the order of the fringe whose center is point P.
- 1-3) Slits S₁ and S₂ are replaced by a horizontal slit S of width $a_1 = 0.1$ mm. O is the center of the central bright fringe and $\alpha = 2 \theta_1$ where α is the angular width of the central bright fringe (θ_1 is a small angle) (Doc. 7).
 - **1-3-1**) Name the phenomenon that takes place at the slit S.
 - **1-3-2)** Show that the width L of the central bright fringe is given by the

expression:
$$L = \frac{2\lambda D}{a_1}$$

- **1-3-3**) Deduce the distance d between O and the center of the first dark fringe.
- **1-3-4**) Deduce that P is neither the center of a bright fringe nor the center of a dark fringe.

1-4) The previous two experiments show evidence of an aspect of light. Name this aspect.

2) Second aspect

The monochromatic radiation of wavelength $\lambda = 600$ nm in air, emitted by the laser source, illuminates now the surface of a lithium metal of work function $W_0 = 2.39$ eV. Given:

Planck's constant $h = 6.6 \times 10^{-34} \text{ J.s}$; 1 eV = $1.6 \times 10^{-19} \text{ J}$

Take: the speed of light in air $c = 3 \times 10^8 \text{ m/s}$.

2-1) Define the work function (extraction energy) of a metal.

2-2) Calculate, in eV, the energy of a photon in this radiation.

- 2-3) Deduce that there is no photoelectric emission from the surface of the lithium metal.
- 2-4) In order to extract electrons from the surface of the lithium metal, the laser source is replaced by another one emitting a radiation of wavelength $\lambda' = 500$ nm in air. Determine, in eV, the maximum kinetic energy of the liberated electrons.
- 2-5) This experiment shows evidence of an aspect of light. Name this aspect.

أسس التصحيح – مادة الفيزياء - إنكليزي

Exercise 1 (7 points) Horizontal elastic pendulum

	rtie	Answer		Mark	
	1	$ME = \frac{1}{2}mv^{2} + \frac{1}{2}kx^{2}$	0	.5	
		There is no friction therefore the mechanical energy is conserved. $ME = constant$, then $\frac{dME}{dt} = 0$, hence $m v v' + k x x' = 0$ with $v = x'$ and $v' = x''$ $x' (mv + kx) = 0$, but $x' = 0$ is rejected ; therefore, $x'' + \frac{k}{m}x = 0$]	1	
	3 The differential equation is of the form: $x'' + \omega_0^2 x = 0$ then : $\omega_0 = \sqrt{\frac{k}{m}}$		0	.5	
	4	$\mathbf{v} = \mathbf{X}_{\mathrm{m}} \boldsymbol{\omega}_{\mathrm{0}} \cos(\boldsymbol{\omega}_{\mathrm{0}} \mathbf{t} + \boldsymbol{\varphi})$	0.25		
	5			25 25	
6		$\begin{aligned} \sin\varphi &= \frac{x_0}{X_m} & \text{and} & \cos\varphi &= \frac{v_0}{\omega_0 X_m} \\ \sin^2\varphi + \cos^2\varphi &= 1 \\ \frac{x_0^2}{X_m^2} + \frac{v_0^2}{\omega_0^2 X_m^2} &= 1 \\ & \text{, so} & X_m^2 &= x_0^2 + \frac{v_0^2}{\omega_0^2} \\ \end{aligned}$ Therefore, $X_m &= \sqrt{x_0^2 + \frac{v_0^2}{\omega_0^2}} \end{aligned}$		l	
	7.1	Free undamped mechanical oscillations since the amplitude x_m is constant	0	.5	
7	7.2	$x_0 = 10 \text{ cm}$; $v_0 = -4.58 \text{ m/s}$ $X_m = 25 \text{ cm}$; $V_m = 5 \text{ m/s}$		0.25 0.25	
8		Substituting the values of x_0 , v_0 and X_m into the expression of X_m gives : $0.25 = \sqrt{0.1^2 + \frac{-4.58^2}{\omega_0^2}}$, then $\omega_0 = 19.98 \cong 20 \text{ rad/s}$ \underline{Or} : $V_m = \omega_0 X_m$, then $\omega_0 = \frac{V_m}{X_m} = \frac{5}{0.25} = 20 \text{ rad/s}$	0.	.5	
	9.1	$\omega' = \sqrt{\frac{k}{m'}}$	0.	0.25	
9	9.2	$\omega' = 10 \text{ rad/s} k = m' \times \omega'^2 = 0.8 \times 10^2 = 80 \text{ N/m} m = \frac{k}{\omega_0^2} = \frac{80}{400} = -0.2 \text{ kg}$	0.5 0.5		

	art	Answer	notes
	1	$i=\frac{dq}{dt}$, but $q=C\times u_C$, then $i=C\;\frac{du_C}{dt}$	0.5
2		$E = u_{BD} + u_{DN} = u_C + Ri$, but $i = C \frac{du_C}{dt}$; therefore, $E = u_C + R C \frac{du_C}{dt}$	0.75
3		$\begin{array}{l} \displaystyle \frac{du_{C}}{dt}=-\frac{b}{\tau}e^{-\frac{t}{\tau}} \hspace{0.2cm}; \hspace{0.2cm} \text{Substituting } u_{C} \hspace{0.1cm} \text{and } \hspace{0.1cm} \frac{du_{C}}{dt} \hspace{0.2cm} \text{in the differential equation gives :} \\ \displaystyle E=a+b \hspace{0.1cm} e^{-\frac{t}{\tau}} \hspace{0.1cm} + \hspace{0.1cm} R \hspace{0.1cm} C \hspace{0.1cm} (-\frac{b}{\tau} \hspace{0.1cm} e^{-\frac{t}{\tau}}) \hspace{0.1cm}, \hspace{0.1cm} \text{so} \hspace{0.1cm} E=a+b \hspace{0.1cm} e^{-\frac{t}{\tau}} \hspace{0.1cm} (1-\frac{RC}{\tau}) \\ \displaystyle \text{By comparison we obtain :} \\ \displaystyle a=E \hspace{0.1cm} \text{and} \hspace{0.1cm} be^{-\frac{t}{\tau}} \hspace{0.1cm} (1-\frac{RC}{\tau})=0 \hspace{0.1cm}, \hspace{0.1cm} \text{but } be^{-\frac{t}{\tau}}=0 \hspace{0.1cm} \text{is rejected , then } 1-\frac{RC}{\tau}=0 \\ \displaystyle \text{Therefore, } \tau=R \hspace{0.1cm} C \\ \displaystyle \text{At } t_{o}=0, \hspace{0.1cm} \text{the charge is } q_{o}=0 \hspace{0.1cm}, \hspace{0.1cm} \text{then } u_{C0}=0. \\ \displaystyle \text{Substituting } u_{C0}=0 \hspace{0.1cm} \text{into the expression of } u_{C} \hspace{0.1cm} \text{gives: } 0=a+b \hspace{0.1cm}, \hspace{0.1cm} \text{so} \hspace{0.1cm} b=-a=-E \end{array}$	2
4		$i = C \frac{du_C}{dt} = C \frac{E}{\tau} e^{-\frac{t}{\tau}} = \frac{E}{R} e^{-\frac{t}{\tau}}$	0.5
	5	A $t_0 = 0$: $i = I_0 = \frac{E}{R}e^0$, then $I_0 = \frac{E}{R}$, thus $R = \frac{E}{I_0} = \frac{10}{5 \times 10^{-3}} = 2 \times 10^3 \Omega$	0.5
6		$u_R = Ri = R C \frac{du_C}{dt} = RC \frac{E}{\tau} e^{-\frac{t}{\tau}}$, then $u_R = E e^{-\frac{t}{\tau}}$	0.5
7	7.1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.75
7	7.2	$C = \frac{t_1}{R \ \ln 2} = \frac{1.4 \times 10^{-3}}{2 \times 10^3 \times \ \ln 2} = 1 \times 10^{-6} \ F$	0.5
Q	8.1	The curve is a straight line passing through the origin with a positive slope, then it is in agreement with the expression $\tau = RC$.	0.5
8	8.2	Slope = C = $\frac{\Delta \tau}{\Delta R} = \frac{3 \times 10^{-3}}{3 \times 10^{3}} = 1 \times 10^{-6} \text{ F}$	0.5

Part			Aspects of Light Answer	Mark
1	1.1		$i = \frac{\lambda D}{a} = \frac{600 \times 10^{-9} \times 2}{0.5 \times 10^{-3}} = 24 \times 10^{-4} \text{ m} = 2.4 \text{ mm}$	0.5
	1	1.2	$\begin{split} x_{P} &= 9.6 \text{ mm} = 4 \text{ i} \text{ , then P is the center of the 4}^{\text{th}} \text{ bright fringe.} \\ \underline{Or}: \\ P \text{ is the center of a bright fringe if } x_{P} &= \frac{k \lambda D}{a} \text{ with } k \in Z. \\ x_{P} &= \frac{k \lambda D}{a} \text{ , then } k = \frac{a x_{P}}{\lambda D} = \frac{0.5 \times 10^{-3} \times 9.6 \times 10^{-3}}{600 \times 10^{-9} \times 2} = 4 \in Z, \text{ then P is the center of the 4}^{\text{th}} \text{ bright fringe.} \end{split}$	1
	1.3	1.3.1	Diffraction of light	0.25
		1.3.2	From the figure: $\tan \frac{\alpha}{2} = \frac{L/2}{D}$, but α is small then $\tan \alpha \cong \alpha$ So $\frac{\alpha}{2} = \frac{L}{2D}$ But $\alpha = \frac{2\lambda}{a_1}$; therefore, $L = \frac{2\lambda D}{a_1}$	0.75
		1.3.3	$d = \frac{L}{2} = \frac{2 \times 600 \times 10^{-9} \times 2}{2 \times 0.1 \times 10^{-3}} = 0.012 \text{ m} = 12 \text{ mm}$	0.5
		1.3.4	$x_P < d = \frac{L}{2}$, then it is neither the center of a bright nor the center of a dark fringe.	0.25
	1.4		Wave aspect of light	0.25
2	2.1		W_0 is the minimum energy needed to extract an electron from the surface of a metal.	0.5
	2.2		$E_{ph} = \frac{hc}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{600 \times 10^{-9}} = 3.3 \times 10^{-19} \text{ J}$ $E_{ph} = \frac{3.3 \times 10^{-19}}{1.6 \times 10^{-19}} = 2.0625 \text{ eV}$	0.75
	2.3		$E_{ph} < W_o$, then there is no photoelectric emission.	0.25
	2.4		$\begin{split} E'_{ph} &= W_o + KE_{max} , \text{ then } KE_{max} = E'_{ph} - W_o = \frac{h c}{\lambda'} - W_o \\ KE_{max} &= \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{500 \times 10^{-9} \times 1.6 \times 10^{-19}} - 2.39 = 0.085 \text{ eV} \end{split}$	0.75
	2	2.5	Corpuscular (particle) aspect of time	0.25

Exercise 3 (6 points) Aspects of Light