المادة: الفيزياء – لغة إنكليزية الشهادة: الثانوية العامّة الفرع: علوم الحياة نموذج رقم: 1 / 2019 المدّة: ساعتان	الهيئة الأكاديميّة المشتركة قسم: العلوم	المركز التربوي للبحوث والإنماء
---	--	-----------------------------------

This test includes three mandatory exercises. The use of non-programmable calculators is allowed.

Exercise 1 (6 points)

Horizontal mechanical oscillator

The aim of this exercise is to determine the stiffness k of the spring (R) of a horizontal mechanical oscillator. This oscillator is formed of a particle (S₁) of mass M = 400 g and the spring (R) of negligible mass and of stiffness k.

The center of mass G of (S_1) may move along a horizontal straight axis x'Ox; O is at the equilibrium position of G, the spring being unstretched, as shown in (Doc 1). Neglect any force of friction.

1) Setting the oscillator in motion

(S₁) is initially at rest and G is at O. To set (S₁) in motion, a particle (S₂), of mass $m = \frac{M}{2}$, is launched towards

(S₁) along the axis x'Ox. Just before the collision, (S₂) was moving with the velocity $\overrightarrow{V_2} = V_2 \vec{i}$ (V₂ = 0.75 m/s). Just after the collision, (S₁) and (S₂) stick together to form a system (S) of mass M_S and of center of mass G. Thus, (S) acquires the velocity $\overrightarrow{V_0} = V_0 \vec{i}$.

- 1-1) Specify the physical quantity that remains conserved during this collision.
- 1-2) Write the equation that expresses the preceding conservation.
- **1-3**) Show that $V_0 = 0.25$ m/s.

2) Energetic study of the un-damped oscillator

(S) is set in motion, just after the collision, with the velocity $\vec{V_0} = V_0 \vec{i}$ at the instant $t_0 = 0$. At an instant t,

the position of G is defined by its abscissa $x = \overline{OG}$ and the algebraic value of its velocity is $v = x' = \frac{dx}{dt}$.

The horizontal plane passing through G is taken as a gravitational potential energy reference.

- 2-1) Write, at an instant t, the expression of the mechanical energy ME of the system [(S), (R), Earth].
- **2-2**) Derive the differential equation that describes the motion of G as a function of time.
- 2-3) We suppose that the time equation of motion of G is written as: $x = X_m sin(\omega_0 t)$ (x in m; t in s), where X_m is a positive constant.
- **2.3.1**) Determine the expression of ω_0 .
- **2.3.2**) During the motion of (S), G oscillates between two extreme positions A and B, 20 cm apart. Determine the value of k.
- **2.3.3**) G passes through the point C of abscissa $x_1 = -5.0$ cm for the second time at the instant t_1 . Determine t_1 .

Exercise 2 (7 points)

Determination of the characteristics of electric components

150

100

50

0

(Doc 5)

I (mA)

The aim of this exercise is to determine the characteristics R, L and C respectively of a resistor, a coil of negligible resistance and a capacitor. For this, we perform two experiments. Take: $\pi^2 = 10$.

1st experiment 1)

Consider a series circuit (Doc 2) that consists of an LFG which delivers across its terminals an alternating sinusoidal voltage of effective value U and of adjustable frequency f, a resistor of resistance R, a coil of inductance L and of negligible resistance, a capacitor of capacitance C and an ammeter.

A voltmeter, connected across the terminals of the LFG, reads a constant value of U = 21 V.

We give f different values and we register, for each value, the effective current carried by the circuit. We obtain the plotted graph of (Doc 3) giving the variations of I as a function of f.

- 1-1) Specify the name of the physical phenomenon that takes place for f = 200 Hz.
- **1-2)** Indicate then the proper frequency f_0 of this circuit.
- **1-3**) Deduce the value of R.
- **1-4)** Show that the first relation between L and C is: $LC = 0.625 \times 10^{-6} SI.$

2) 2nd experiment

We consider the RLC series circuit shown in (Doc 4) where $R = 150 \Omega$.

The expression of the voltage across the terminals of the LFG is: $u_{AM} = U_m \sin (2\pi f t)$.

The circuit thus carries an alternating sinusoidal current i.

The oscilloscope is connected to display the voltage u_{AM} across the LFG and the voltage u_{DM} across the resistor. (Doc 5) shows the waveforms (1) and (2) corresponding respectively to the voltages u_{AM} and u_{DM} , the frequency of u_{AM} being adjusted to f = 50 Hz.

The vertical sensitivity on both channels is 5 V/division.

- **2-1)** Calculate, referring to (Doc 5), the maximum voltage U_m across the LFG.
- **2-2**) Determine, referring to (Doc 5), the expression of the voltage u_{DM} .
- **2-3**) Deduce the expression of i.
- 2-4) Determine the expression of the voltage u_{AB} across the terminals of the capacitor.
- 2-5) Determine the expression of the voltage u_{BD} across the terminals of the coil.
- **2-6)** Using the relation $u_{AM} = u_{AB} + u_{BD} + u_{DM}$, at any instant t, and giving t the value zero (t = 0), show that the second relation between L and C is: $10^4 \pi^2 LC + 15000 \pi C \sqrt{3} = 1$.

3) Conclusion

Determine the values of L and C from the above two relations between L and C.

I as a function of f

Exercise 3 (7 points) Aspect of light

1) In a Young's set up, placed in air, the two slits S_1 and S_2 , straight and parallel, have their centers, separated by a distance $a = S_1S_2 = 1$ mm. They are illuminated by a source S emitting a monochromatic light of wavelength, in air, $\lambda = 625$ nm, S being equidistant from S_1 and S_2 .

The screen of observation (P), parallel to the plane of (S_1S_2) , is at a distance D = 1 m from I, the mid-point of $[S_1S_2]$. On (P), we consider a point M in the zone of interference whose position is defined by its abscissa x relative to the point O, the orthogonal projection of I on (P) as shown in (Doc 6).

- **1-1**) Describe the fringes observed on the screen E.
- **1-2**) Interpret the existence of the fringes.
- **1-3**) Specify the nature of the fringe whose center is at O.
- 1-4) Give, in terms of D, a and x, the optical path difference at point M.
- 1-5) Derive the expression of the abscissa x of the centers of the dark fringes in terms of D, λ and a.
- **1-6**) Deduce the inter-fringe distance in terms of λ , D and a.
- **1-7**) Determine the type and order of the fringe whose center is at a distance of 3.75 mm from O.
- **1-8)** A parallel plate, of thickness e and index of refraction n = 1.5, is placed in front of S_1 . The optical path difference at a point M becomes: $\delta = (S_2M S_1M) = \frac{ax}{D} e(n-1)$. The center of the central bright fringe occupies now the position that was occupied previously by the center of the 2nd dark fringe. Determine e.

2) Now, we cover the slit S_1 . The source S, emitting the monochromatic radiation, is placed facing the slit S_2 whose width is of 0.10 mm as shown in (Doc 7).

- **2-1**) Name the phenomenon that the light undergoes through the slit.
- **2-2)** Calculate the width L of the central fringe obtained on the screen.
- 3) The preceding two optical phenomena show evidence of a particular aspect of light. Indicate this aspect.

المادة: الفيزياء – لغة إنكليزية الشهادة: الثانوية العامّة الفرع: علوم الحياة نموذج رقم: 1 / 2019	الهيئة الأكاديميّة المشتركة قسم: العلوم	المركز التربوي للبحوث والإنماء
المدة: ساعتان		

أسس التصحيح

Exercise 1 (6 points) Horizontal mechanical oscillator		
Question	Answer	Mark
1-1	The linear momentum of the system $[(S_1), (S_2)]$ is conserved since the forces applied are the weights $M\vec{g}$ and $m\vec{g}$ and the normal reactions of the support $\overrightarrow{N_1}$ and $\overrightarrow{N_2}$ whose sum is nil.	1⁄2
1-2	$M_S \vec{V_0} = m\vec{V}_2$; along the x-axis, we may write: $mV_2 = M_S V_0$	1⁄2
1-3	$V_0 = mV_2/M_S = 0.200 \times 0.75 / 0.600 = 0.25 \text{ m/s}$	1/2
2-1	$ME = KE + PE = \frac{1}{2} M_{S}v^{2} + \frac{1}{2} kx^{2} \qquad (PE_{g} = 0)$	1/2
2-2	The conservation of the mechanical energy of the system [(S), (R), Earth] is due to the absence of any loss in energy (the only external force applied, whose point of application moves, is the normal reaction whose work is nil). $ME = \frac{1}{2} M_S v^2 + \frac{1}{2} kx^2 = \text{constant } \forall t$ The derivative with respect to time gives: $\frac{dME}{dt} = M_S v \frac{dv}{dt} + kx \frac{dx}{dt} = 0 \forall t$; we get: $M_S v \left(\frac{d^2x}{dt^2} + \frac{k}{M_S}x\right) = 0 \forall t$; But v is not always nil. We obtain: $x'' + \frac{k}{M_S}x = 0$	1
2-3-1	$ x = X_{m} \sin(\omega_{0}t) ; v = x' = \omega_{0} X_{m} \cos(\omega_{0}t) ; x'' = -\omega_{0}^{2} X_{m} \sin(\omega_{0}t) = -\omega_{0}^{2} x ; We \text{ get:} $ $ x'' + \omega_{0}^{2} x = 0. \text{ Identifying with the previous equation, we obtain: } \omega_{0}^{2} = \frac{k}{M_{S}} \Rightarrow \omega_{0} = \sqrt{\frac{k}{M_{S}}} $	1
2-3-2	Since ME = constant, so : ME(t ₀ = 0) = ME(t) = $\frac{1}{2}$ M _S V ₀ ² = 0.5 × 0.6 × (0.25) ² = 0.01875 J The amplitude is : X _m = AB/2 = 10 cm = 0.10 m ; for x = X _m ,v = 0; ME = PE _e = $\frac{1}{2}$ kX _m ² 0.01875 = $\frac{1}{2}$ k × (0.10) ² ; k = 3.75 N/m	1
2-3-3	For $t = t_1$, $v_1 > 0$ since G moves in the positive direction, and $x_1 = -5.0$ cm. So: $(\omega_0 = \sqrt{\frac{3.75}{0.600}} = 2.5 \text{ rad/s} \text{ and } T_0 = 2\pi/2.5 \approx 2.51 \text{ s}).$ $x_1 = 0.10 \sin(2.5t_1) = -0.050 \text{ m}$ and $v_1 = 0.25\cos(2.5t_1) > 0$ $\Rightarrow \sin(2.5t_1) = -0.50 \text{ and } \cos(2.5t_1) > 0 \Rightarrow 2.5t_1 = -\pi/6 \text{ or } 2.5t_1 = 2\pi - \pi/6 = 11\pi/6$ The negative value of t_1 is rejected; Hence: $t_1 \approx 2.3$ s	1

Exercise 2	(7 points) Determination of the characteristics of electric components	
Question	Answer	Mark
1-1	The circuit is thus the seat of the current resonance phenomenon since the effective current takes a maximum value I_0 for $f = 200$ Hz.	1⁄4
1-2	The proper frequency is then $f_0 = 200$ Hz.	1⁄4
1-3	The maximum value of the effective current is: $I_0 = 140$ mA. So: $R = \frac{U}{I_0} = \frac{21}{0.140} = 150 \Omega$.	1/2
1-4	In this case: $f_0 = \frac{1}{2\pi\sqrt{LC}} = 200$; $LC = \frac{1}{4 \times \pi^2 \times 4 \times 10^4}$ LC = 0.625×10 ⁻⁶ SL (1)	1⁄2
2-1	$U_{m} = S_{v}.Y = 4 \times 5 = 20 V$ $u_{AM} = 20 \sin (100\pi t)$	1/2
2-2	The waveform (2), (u _{DM}), leads in phase the waveform (1), (u _{AM}), by $ \varphi $. One period (2 π) extends over 6 div; the phase difference $ \varphi $ is relative to 1 div. So: $ \varphi = \frac{2\pi \times 1}{6} = \frac{\pi}{3}$ rad and $\omega = 2\pi f = 100\pi$ rad/s $U_{m2} = S_v \cdot Y = 2 \times 5 = 10$ V and $u_{DM} = 10 \sin(100\pi t + \pi/3)$ (u _{DM} in V, t in s)	11/2
2-3	Ohm's law gives: $i = \frac{u_{DM}}{R} = \frac{10}{150} \sin(100\pi t + \frac{\pi}{3})$; We get: $i = \frac{1}{15} \sin(100\pi t + \frac{\pi}{3}) = 0.067 \sin\left(100\pi t + \frac{\pi}{3}\right)$; (i in A, t in s).	1⁄2
2-4	$i = \frac{dq}{dt} = C \frac{du_{AB}}{dt}$ The voltage across the capacitor is written as: $u_{AB} = \frac{1}{C} \int i dt = -\frac{1}{1500 \pi C} \cos(100 \pi t + \frac{\pi}{3})$, the integration constant being nil since u_{AB} is an alternating sinusoidal voltage.	1/2
2-5	$u_{BD} = L \frac{di}{dt} = \frac{100}{15} \pi L \cos(100\pi t + \frac{\pi}{3})$	1/2
2-6	$u_{AM} = u_{AB} + u_{BD} + u_{DM} \forall t$ $20 \sin (100 \pi t) = (\frac{100}{15} \pi L - \frac{1}{1500 \pi C}) \cos (100 \pi t + \frac{\pi}{3}) + 10 \sin (100 \pi t + \frac{\pi}{3})$ For $t = 0$ $0 = (\frac{100}{15} \pi L - \frac{1}{1500 \pi C}) \cos (\frac{\pi}{3}) + 10 \sin (\frac{\pi}{3})$ $10^4 \pi^2 LC + 15000 \pi C \sqrt{3} = 1 (2)$	1
3	The equations (1) and (2) give: $\begin{cases} C=1.15 \times 10^{-5} F=0.115 \mu F \\ L=0.0543 H=54.3 \text{ mH} \end{cases}$	1

Exercise 3	(7 points) Aspect of light	
Question	Answer	Mark
1-1	We observe on the screen fringes that are straight, alternately bright and dark, parallel to each other and to the slits, and having the same dimensions.	1⁄2
1-2	We have the superposition of the two light beams emitted by S_1 and S_2 . When these light beams reach a certain point in phase, we have a constructive interference and this point is the center of a bright fringe; when they reach another point in opposite phase, we have a destructive interference and this point is the center of a dark fringe.	1⁄2
1-3	The optical path difference at O is written as: $\delta = S_2O - S_1O = 0 \Rightarrow \delta = 0$. So, O is the center of a bright fringe since the waves received at O are in phase.	3⁄4
1-4	The optical path difference is written as: $\delta = S_2 M - S_1 M = \frac{ax}{D}$	1⁄4
1-5	For the centers of the dark fringes, we have: $\delta = \left(k + \frac{1}{2}\right)\lambda$ and $\delta = \frac{ax}{D}$ where $k \in \mathbb{Z}$. Thus: $x = \left(k + \frac{1}{2}\right)\frac{\lambda D}{a}$	1/2
1-6	The inter-fringe distance is the distance between the centers of two consecutive fringes of the same nature. $i = x_{k+1} - x_k = \left(k + 1 + \frac{1}{2}\right) \frac{\lambda D}{a} - \left(k + \frac{1}{2}\right) \frac{\lambda D}{a} = \frac{\lambda D}{a}$	1
1-7	x = 3.75 mm = 3.75×10^{-3} m M is the center of a bright fringe if $\delta = k \lambda$, and M is the center of a dark fringe if $\delta = \left(k + \frac{1}{2}\right)\lambda$, k being an integer number. So: $\frac{\delta}{\lambda} = \frac{ax}{\lambda D} = 10^{-3} \times 3.75 \times 10^{-3} / (625 \times 10^{-9} \times 1) = 6$ So, M is the center of the 6 th bright fringe.	1
1-8	For the center of the central bright fringe, we have: $\delta = 0$; We get: $\frac{ax}{D} = e (n-1)$ and $i = \lambda D/a$, so: $i = 625 \times 10^{-9} \times 1/10^{-3} = 0.625 \times 10^{-3} \text{ m} = 0.625 \text{ mm.}$ but the abscissa x of the center of the second dark fringe is written as: $x = 3i/2 = 9.375 \times 10^{-4} \text{ m}$ We get: $e = \frac{ax}{D(n-1)} = \frac{9.375 \times 10^{-4} \times 10^{-3}}{1 \times (1.5-1)} = 1.875 \times 10^{-6} \text{ m}$	1
2-1	The width of the slit is: $b = 0.10 \text{ mm} = 1.0 \times 10^{-4} \text{ m}$; it is very small. The light thus undergoes the diffraction phenomenon.	1⁄2
2-2	L= $\frac{2\lambda D}{b}$; so : L= $\frac{2\lambda D}{b} = \frac{2 \times 625 \times 10^{-9} \times 1}{10^{-4}} = 1250 \times 10^{-5} \text{m} = 12.5 \text{ mm}$	1/2
3	The first phenomenon is the phenomenon of light interference and the second is the phenomenon of light diffraction. So, it is the wave aspect of light.	1/2