المادة: الفيزياء ـ لغلة إنكليزية الثشهادة: الثانوية العامّة الفرع: علوم الحياة نموذج رقم: 1 / 2019 المدّة: ساعتّان	الهيئة الأكاديميّة المشتركة قسم: العلوم	المركز التربوى للبحوث والإنماء

This test includes three mandatory exercises. The use of non-programmable calculators is allowed.

Exercise 1 (6 points) Horizontal mechanical oscillator

The aim of this exercise is to determine the stiffness k of the spring (R) of a horizontal mechanical oscillator. This oscillator is formed of a particle $\left(S_{1}\right)$ of mass $M=400 \mathrm{~g}$ and the spring (R) of negligible mass and of stiffness k.
The center of mass G of $\left(\mathrm{S}_{1}\right)$ may move along a horizontal straight axis x'Ox; O is at the equilibrium position of G , the spring being unstretched, as shown in (Doc 1). Neglect any force of friction.

1) Setting the oscillator in motion

$\left(S_{1}\right)$ is initially at rest and G is at O. To set $\left(S_{1}\right)$ in motion, a particle $\left(S_{2}\right)$, of mass $m=\frac{M}{2}$, is launched towards $\left(S_{1}\right)$ along the axis x'Ox. Just before the collision, $\left(S_{2}\right)$ was moving with the velocity $\overrightarrow{V_{2}}=V_{2} \overrightarrow{1}\left(V_{2}=0.75 \mathrm{~m} / \mathrm{s}\right)$. Just after the collision, $\left(\mathrm{S}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ stick together to form a system (S) of mass M_{s} and of center of mass G . Thus, (S) acquires the velocity $\overrightarrow{V_{0}}=V_{0} \overrightarrow{1}$.
1-1) Specify the physical quantity that remains conserved during this collision.
1-2) Write the equation that expresses the preceding conservation.
1-3) Show that $V_{0}=0.25 \mathrm{~m} / \mathrm{s}$.

2) Energetic study of the un-damped oscillator

(S) is set in motion, just after the collision, with the velocity $\overrightarrow{V_{0}}=V_{0} \overrightarrow{1}$ at the instant $t_{0}=0$. At an instant t, the position of G is defined by its abscissa $x=\overline{\mathrm{OG}}$ and the algebraic value of its velocity is $v=x^{\prime}=\frac{d x}{d t}$.
The horizontal plane passing through G is taken as a gravitational potential energy reference.
2-1) Write, at an instant t, the expression of the mechanical energy ME of the system [(S), (R), Earth].
2-2) Derive the differential equation that describes the motion of G as a function of time.
2-3) We suppose that the time equation of motion of G is written as: $\mathrm{x}=\mathrm{X}_{\mathrm{m}} \sin \left(\omega_{0} \mathrm{t}\right) \quad(\mathrm{x}$ in $\mathrm{m} ; \mathrm{t}$ in s$)$, where X_{m} is a positive constant.
2.3.1) Determine the expression of ω_{0}.
2.3.2) During the motion of (S), G oscillates between two extreme positions A and $B, 20 \mathrm{~cm}$ apart. Determine the value of k .
2.3.3) G passes through the point C of abscissa $x_{1}=-5.0 \mathrm{~cm}$ for the second time at the instant t_{1}. Determine t_{1}.

Exercise 2 (7 points)

Determination of the characteristics of electric components

The aim of this exercise is to determine the characteristics R, L and C respectively of a resistor, a coil of negligible resistance and a capacitor. For this, we perform two experiments. Take: $\pi^{2}=10$.

1) $1^{\text {st }}$ experiment

Consider a series circuit (Doc 2) that consists of an LFG which delivers across its terminals an alternating sinusoidal voltage of effective value U and of adjustable frequency f, a resistor of resistance R, a coil of inductance L and of negligible resistance, a capacitor of capacitance C and an ammeter.
A voltmeter, connected across the terminals of the LFG, reads a constant value of $U=21 \mathrm{~V}$.
We give f different values and we register, for each value, the effective current carried by the circuit. We obtain the plotted graph of (Doc 3) giving the variations of I as a function of f.
1-1) Specify the name of the physical phenomenon that takes place for $\mathrm{f}=200 \mathrm{~Hz}$.
1-2) Indicate then the proper frequency f_{0} of this circuit.
1-3) Deduce the value of R.
1-4) Show that the first relation between L and C is: $\mathrm{LC}=0.625 \times 10^{-6} \mathrm{SI}$.

2) $2^{\text {nd }}$ experiment

We consider the RLC series circuit shown in (Doc 4) where $\mathrm{R}=150 \Omega$.
The expression of the voltage across the terminals of the LFG
 is: $u_{\mathrm{AM}}=\mathrm{U}_{\mathrm{m}} \sin (2 \pi \mathrm{ft})$.
The circuit thus carries an alternating sinusoidal current i.
The oscilloscope is connected to display the voltage u_{AM} across the LFG and the voltage $u_{D M}$ across the resistor. (Doc 5) shows the waveforms (1) and (2) corresponding respectively to the voltages $u_{A M}$ and $u_{D M}$, the frequency of $u_{A M}$ being adjusted to $\mathrm{f}=50 \mathrm{~Hz}$.
The vertical sensitivity on both channels is $5 \mathrm{~V} /$ division.
2-1) Calculate, referring to (Doc 5), the maximum voltage U_{m} across the LFG.
2-2) Determine, referring to (Doc 5), the expression of the voltage $u_{D M}$.
2-3) Deduce the expression of i.
2-4) Determine the expression of the voltage $u_{A B}$ across the terminals of the
 capacitor.
2-5) Determine the expression of the voltage $u_{B D}$ across the terminals of the coil.
2-6) Using the relation $u_{A M}=u_{A B}+u_{B D}+u_{D M}$, at any instant t, and giving t the value zero $(t=0)$, show that the second relation between L and C is: $10^{4} \pi^{2} L C+15000 \pi C \sqrt{3}=1$.

3) Conclusion

Determine the values of L and C from the above two relations between L and C .

Exercise 3 (7 points)
 Aspect of light

1) In a Young's set up, placed in air, the two slits S_{1} and S_{2}, straight and parallel, have their centers, separated by a distance $\mathrm{a}=\mathrm{S}_{1} \mathrm{~S}_{2}=1 \mathrm{~mm}$. They are illuminated by a source S emitting a monochromatic light of wavelength, in air, $\lambda=625 \mathrm{~nm}, S$ being equidistant from S_{1} and S_{2}.

The screen of observation (P), parallel to the plane of $\left(\mathrm{S}_{1} \mathrm{~S}_{2}\right)$, is at a distance $\mathrm{D}=1 \mathrm{~m}$ from I , the mid-point of $\left[\mathrm{S}_{1} \mathrm{~S}_{2}\right]$. On (P), we consider a point M in the zone of interference whose position is defined by its abscissa x relative to the point O, the orthogonal projection of I on (P) as shown in (Doc 6).
1-1) Describe the fringes observed on the screen E .
1-2) Interpret the existence of the fringes.

1-3) Specify the nature of the fringe whose center is at O.
1-4) Give, in terms of D, a and x, the optical path difference at point M.
1-5) Derive the expression of the abscissa x of the centers of the dark fringes in terms of D, λ and a.
1-6) Deduce the inter-fringe distance in terms of λ, D and a .
1-7) Determine the type and order of the fringe whose center is at a distance of 3.75 mm from O .
1-8) A parallel plate, of thickness e and index of refraction $n=1.5$, is placed in front of S_{1}. The optical path difference at a point M becomes: $\delta=\left(S_{2} M-S_{1} M\right)=\frac{\text { ax }}{D}-e(n-1)$. The center of the central bright fringe occupies now the position that was occupied previously by the center of the $2^{\text {nd }}$ dark fringe. Determine e.
2) Now, we cover the slit S_{1}. The source S, emitting the monochromatic radiation, is placed facing the slit S_{2} whose width is of 0.10 mm as shown in (Doc 7).
2-1) Name the phenomenon that the light undergoes through the slit.
2-2) Calculate the width L of the central fringe obtained on the screen.
3) The preceding two optical phenomena show evidence of a particular aspect of light. Indicate this aspect.

المادة: الفيزياء ـ لـغة إنكليزيـة الثشهادة: الثثانوية العامّة الفرع: علوم الحياة نموذج رقم: 1 / 2019 المدّة: ساعتّان	الهيئة الأكاديميّة المشتركة قسم: العلوم	المركز التربوي للبحوث والإنماء
	أسس التصحيح	

Exercise 1 (6 points)
Horizontal mechanical oscillator

Question	Answer	Mark
1-1	The linear momentum of the system $\left[\left(\mathrm{S}_{1}\right),\left(\mathrm{S}_{2}\right)\right]$ is conserved since the forces applied are the weights $M \vec{g}$ and $m \vec{g}$ and the normal reactions of the support $\overrightarrow{\mathrm{N}_{1}}$ and $\overrightarrow{\mathrm{N}_{2}}$ whose sum is nil.	$1 / 2$
1-2	$\mathrm{M}_{\mathrm{S}} \overrightarrow{\mathrm{V}_{0}}=\mathrm{m} \overrightarrow{\mathrm{V}}_{2}$; along the x-axis, we may write: $\mathrm{mV}_{2}=\mathrm{M}_{\mathrm{S}} \mathrm{V}_{0}$	1/2
1-3	$\mathrm{V}_{0}=\mathrm{mV}_{2} / \mathrm{MS}_{\mathrm{S}}=0.200 \times 0.75 / 0.600=0.25 \mathrm{~m} / \mathrm{s}$	1/2
2-1	$\mathrm{ME}=\mathrm{KE}+\mathrm{PE}=1 / 2 \mathrm{M}_{\mathrm{S}} \mathrm{v}^{2}+1 / 2 \mathrm{kx}^{2} \quad\left(\mathrm{PE}_{\mathrm{g}}=0\right)$	1/2
2-2	The conservation of the mechanical energy of the system [(S), (R), Earth] is due to the absence of any loss in energy (the only external force applied, whose point of application moves, is the normal reaction whose work is nil). $\mathrm{ME}=1 / 2 \mathrm{MSv}^{2}+1 / 2 \mathrm{kx}^{2}=\text { constant } \forall \mathrm{t}$ The derivative with respect to time gives: $\frac{d M E}{d t}=M_{S} v \frac{d v}{d t}+k x \frac{d x}{d t}=0 \forall t$; we get: $M_{S} v\left(\frac{d^{2} x}{d t^{2}}+\frac{k}{M_{S}} x\right)=0 \forall t$; But v is not always nil. We obtain: $x^{\prime \prime}+\frac{k}{M_{S}} x=0$	1
2-3-1	$\begin{aligned} & x=X_{m} \sin \left(\omega_{0} t\right) ; v=x^{\prime}=\omega_{0} X_{m} \cos \left(\omega_{0} t\right) ; x^{\prime \prime}=-\omega_{0}^{2} X_{m} \sin \left(\omega_{0} t\right)=-\omega_{0}^{2} x ; \text { We get: } \\ & x^{\prime \prime}+\omega_{0}^{2} x=0 \text {. Identifying with the previous equation, we obtain: } \omega_{0}^{2}=\frac{k}{M_{s}} \Rightarrow \omega_{0}=\sqrt{\frac{k}{M_{S}}} \end{aligned}$	1
2-3-2	Since ME $=$ constant, so $: M E\left(t_{0}=0\right)=M E(t)=1 / 2 M_{S} V_{0}^{2}=0.5 \times 0.6 \times(0.25)^{2}=0.01875 \mathrm{~J}$ The amplitude is : $\mathrm{X}_{\mathrm{m}}=\mathrm{AB} / 2=10 \mathrm{~cm}=0.10 \mathrm{~m}$; for $\mathrm{x}=\mathrm{X}_{\mathrm{m}}, \mathrm{v}=0$; $\mathrm{ME}=\mathrm{PE}_{\mathrm{e}}=1 / 2 \mathrm{kX}_{\mathrm{m}}{ }^{2}$ $0.01875=1 / 2 \mathrm{k} \times(0.10)^{2} ; \mathrm{k}=3.75 \mathrm{~N} / \mathrm{m}$	1
2-3-3	For $\mathrm{t}=\mathrm{t}_{1}, \mathrm{v}_{1}>0$ since G moves in the positive direction, and $\mathrm{x}_{1}=-5.0 \mathrm{~cm}$. So: $\left(\omega_{0}=\sqrt{\frac{3.75}{0.600}=} 2.5 \mathrm{rad} / \mathrm{s}\right.$ and $\left.\mathrm{T}_{0}=2 \pi / 2.5 \approx 2.51 \mathrm{~s}\right)$. $\mathrm{x}_{1}=0.10 \sin \left(2.5 \mathrm{t}_{1}\right)=-0.050 \mathrm{~m}$ and $\mathrm{v}_{1}=0.25 \cos \left(2.5 \mathrm{t}_{1}\right)>0$ $\Rightarrow \sin \left(2.5 \mathrm{t}_{1}\right)=-0.50$ and $\cos \left(2.5 \mathrm{t}_{1}\right)>0 \Rightarrow 2.5 \mathrm{t}_{1}=-\pi / 6$ or $2.5 \mathrm{t}_{1}=2 \pi-\pi / 6=11 \pi / 6$ The negative value of t_{1} is rejected; Hence: $\mathrm{t}_{1} \approx 2.3 \mathrm{~s}$	1

Determination of the characteristics of electric components

Question	Answer	Mark
1-1	The circuit is thus the seat of the current resonance phenomenon since the effective current takes a maximum value I_{0} for $\mathrm{f}=200 \mathrm{~Hz}$.	$1 / 4$
1-2	The proper frequency is then $\mathrm{f}_{0}=200 \mathrm{~Hz}$.	$1 / 4$
1-3	The maximum value of the effective current is: $\mathrm{I}_{0}=140 \mathrm{~mA}$. So: $R=\frac{U}{I_{0}}=\frac{21}{0.140}=150 \Omega$.	1/2
1-4	In this case: $f_{0}=\frac{1}{2 \pi \sqrt{L C}}=200 ; L C=\frac{1}{4 \times \pi^{2} \times 4 \times 10^{4}}$ $\mathrm{LC}=0.625 \times 10^{-6} \mathrm{SI} \quad$ (1)	1/2
2-1	$\begin{aligned} & \mathrm{U}_{\mathrm{m}}=\mathrm{S}_{\mathrm{v}} \cdot \mathrm{Y}=4 \times 5=20 \mathrm{~V} \\ & \mathrm{u}_{\mathrm{AM}}=20 \sin (100 \pi \mathrm{t}) \end{aligned}$	$1 / 2$
2-2	The waveform (2), ($u_{D M}$), leads in phase the waveform (1), (u_{AM}), by $\|\varphi\|$. One period (2π) extends over 6 div; the phase difference $\|\varphi\|$ is relative to 1 div. So: $\|\varphi\|=\frac{2 \pi \times 1}{6}=\frac{\pi}{3} \mathrm{rad}$ and $\omega=2 \pi \mathrm{f}=100 \pi \mathrm{rad} / \mathrm{s}$ $\mathrm{U}_{\mathrm{m} 2}=\mathrm{S}_{\mathrm{v}} \mathrm{Y}=2 \times 5=10 \mathrm{~V}$ and $u_{D M}=10 \sin (100 \pi t+\pi / 3)\left(u_{\text {DM }}\right.$ in V, t in $\left.s\right)$	11⁄2
2-3	$\begin{aligned} & \text { Ohm's law gives: } \mathrm{i}=\frac{\mathrm{u}_{\mathrm{DM}}}{\mathrm{R}}=\frac{10}{150} \sin \left(100 \pi \mathrm{t}+\frac{\pi}{3}\right) ; \text { We get: } \\ & \mathrm{i}=\frac{1}{15} \sin \left(100 \pi \mathrm{t}+\frac{\pi}{3}\right)=0.067 \sin \left(100 \pi \mathrm{t}+\frac{\pi}{3}\right) ;(\mathrm{i} \text { in } \mathrm{A}, \mathrm{t} \text { in } \mathrm{s}) . \end{aligned}$	1/2
2-4	$\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\mathrm{C} \frac{\mathrm{du}_{\mathrm{AB}}}{\mathrm{dt}}$ The voltage across the capacitor is written as: $\mathrm{u}_{\mathrm{AB}}=\frac{1}{\mathrm{C}} \int \mathrm{idt}=-\frac{1}{1500 \pi \mathrm{C}} \cos \left(100 \pi \mathrm{t}+\frac{\pi}{3}\right)$, the integration constant being nil since u_{AB} is an alternating sinusoidal voltage.	$1 / 2$
2-5	$\mathrm{u}_{\mathrm{BD}}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=\frac{100}{15} \pi \mathrm{~L} \cos \left(100 \pi \mathrm{t}+\frac{\pi}{3}\right)$	1/2
2-6	$\begin{aligned} & \mathrm{u}_{\mathrm{AM}}=\mathrm{u}_{\mathrm{AB}}+\mathrm{u}_{\mathrm{BD}}+\mathrm{u}_{\mathrm{DM}} \forall \mathrm{t} \\ & 20 \sin (100 \pi \mathrm{t})=\left(\frac{100}{15} \pi \mathrm{~L}-\frac{1}{1500 \pi \mathrm{C}}\right) \cos \left(100 \pi \mathrm{t}+\frac{\pi}{3}\right)+10 \sin \left(100 \pi \mathrm{t}+\frac{\pi}{3}\right) \end{aligned}$ For $\mathrm{t}=0$ $\begin{align*} & 0=\left(\frac{100}{15} \pi \mathrm{~L}-\frac{1}{1500 \pi \mathrm{C}}\right) \cos \left(\frac{\pi}{3}\right)+10 \sin \left(\frac{\pi}{3}\right) \\ & 10^{4} \pi^{2} \mathrm{LC}+15000 \pi \mathrm{C} \sqrt{3}=1 \tag{2} \end{align*}$	1
3	The equations (1) and (2) give: $\left\{\begin{array}{l}\mathrm{C}=1.15 \times 10^{-5} \mathrm{~F}=0.115 \mu \mathrm{~F} \\ \mathrm{~L}=0.0543 \mathrm{H}=54.3 \mathrm{mH}\end{array}\right.$	1

Question	Answer	Mark
1-1	We observe on the screen fringes that are straight, alternately bright and dark, parallel to each other and to the slits, and having the same dimensions.	$1 / 2$
1-2	We have the superposition of the two light beams emitted by S_{1} and S_{2}. When these light beams reach a certain point in phase, we have a constructive interference and this point is the center of a bright fringe; when they reach another point in opposite phase, we have a destructive interference and this point is the center of a dark fringe.	1/2
1-3	The optical path difference at O is written as: $\delta=\mathrm{S}_{2} \mathrm{O}-\mathrm{S}_{1} \mathrm{O}=0 \Rightarrow \delta=0$. So, O is the center of a bright fringe since the waves received at O are in phase.	$3 / 4$
1-4	The optical path difference is written as: $\delta=\mathrm{S}_{2} \mathrm{M}-\mathrm{S}_{1} \mathrm{M}=\frac{\mathrm{ax}}{\mathrm{D}}$	1/4
1-5	For the centers of the dark fringes, we have: $\delta=\left(\mathrm{k}+\frac{1}{2}\right) \lambda$ and $\delta=\frac{\mathrm{ax}}{\mathrm{D}} \quad$ where $\mathrm{k} \in \mathbf{Z}$. Thus: $\mathrm{x}=\left(\mathrm{k}+\frac{1}{2}\right) \frac{\lambda \mathrm{D}}{\mathrm{a}}$	$1 / 2$
1-6	The inter-fringe distance is the distance between the centers of two consecutive fringes of the same nature. $\mathrm{i}=\mathrm{x}_{\mathrm{k}+1}-\mathrm{x}_{\mathrm{k}}=\left(\mathrm{k}+1+\frac{1}{2}\right) \frac{\lambda \mathrm{D}}{\mathrm{a}}-\left(\mathrm{k}+\frac{1}{2}\right) \frac{\lambda \mathrm{D}}{\mathrm{a}}=\frac{\lambda \mathrm{D}}{\mathrm{a}}$	1
1-7	$\mathrm{x}=3.75 \mathrm{~mm}=3.75 \times 10^{-3} \mathrm{~m}$ M is the center of a bright fringe if $\delta=\mathrm{k} \lambda$, and M is the center of a dark fringe if $\delta=\left(k+\frac{1}{2}\right) \lambda$, k being an integer number. So: $\frac{\delta}{\lambda}=\frac{\mathrm{ax}}{\lambda \mathrm{D}}=10^{-3} \times 3.75 \times 10^{-3} /\left(625 \times 10^{-9} \times 1\right)=6$ So, M is the center of the $6^{\text {th }}$ bright fringe.	1
1-8	For the center of the central bright fringe, we have: $\delta=0$; We get: $\frac{a x}{D}=e(n-1)$ and $i=\lambda D / a$, so: $\mathrm{i}=625 \times 10^{-9} \times 1 / 10^{-3}=0.625 \times 10^{-3} \mathrm{~m}=0.625 \mathrm{~mm}$. but the abscissa x of the center of the second dark fringe is written as: $\mathrm{x}=3 \mathrm{i} / 2=9.375 \times 10^{-4} \mathrm{~m}$ We get: $\mathrm{e}=\frac{\mathrm{ax}}{\mathrm{D}(\mathrm{n}-1)}=\frac{9.375 \times 10^{-4} \times 10^{-3}}{1 \times(1.5-1)}=1.875 \times 10^{-6} \mathrm{~m}$	1
2-1	The width of the slit is: $\mathrm{b}=0.10 \mathrm{~mm}=1.0 \times 10^{-4} \mathrm{~m}$; it is very small. The light thus undergoes the diffraction phenomenon.	1/2
2-2	$\mathrm{L}=\frac{2 \lambda \mathrm{D}}{\mathrm{~b}} ; \text { so }: \mathrm{L}=\frac{2 \lambda \mathrm{D}}{\mathrm{~b}}=\frac{2 \times 625 \times 10^{-9} \times 1}{10^{-4}}=1250 \times 10^{-5} \mathrm{~m}=12.5 \mathrm{~mm}$	$1 / 2$
3	The first phenomenon is the phenomenon of light interference and the second is the phenomenon of light diffraction. So, it is the wave aspect of light.	$1 / 2$

