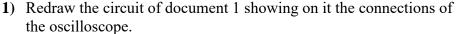
دورة العام 2017 الاستثنائيّة الاثنين في 7 آب 2017	امتحانات الشهادة الثانوية العامة الفرع: علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات الرسميّة
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة: ساعتان	<u> </u>

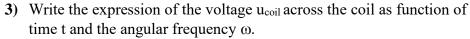
This exam is formed of three obligatory exercises in 3 pages. The use of non-programmable calculator is recommended

Exercise 1 (6.5 points)

Determination of the capacitance of a capacitor


The aim of this exercise is to determine the capacitance C of a capacitor. For this aim, consider the electric circuit shown in document 1. The circuit includes a resistor of resistance R, a coil of inductance L and of negligible resistance r, a capacitor of capacitance C, and a low frequency generator (LFG) delivering alternating sinusoidal voltage:

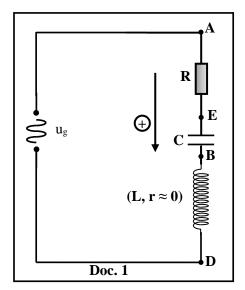
$$u_g = u_{AD} = U_m \cos(\omega t)$$
 (u in V; t in s).

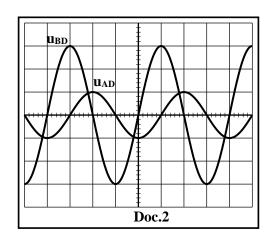

An oscilloscope is connected so as to visualize, as a function of time, the variation of the voltage u_{AD} across the generator on channel Y_1 and the voltage $u_{BD} = u_{coil}$ across the coil on channel Y_2 (Document 2).

The vertical sensitivity of channel 1 is: $Sv_1 = 5 \text{ V/div}$.

The vertical sensitivity of channel 2 is: $Sv_2 = 2 \text{ V/div}$.

- 2) Using the waveforms of document 2, determine:
 - **2-1**) the amplitudes U_m and $U_{m(coil)}$ of the voltages u_g and u_{coil} .
 - **2-2**) the phase difference between the two voltages.




4) The expression of the current i in the circuit is:

$$i = \frac{9.375\,\pi}{\omega}\,\cos(\omega t) \quad (i \text{ in } A \text{ ; t in s}).$$

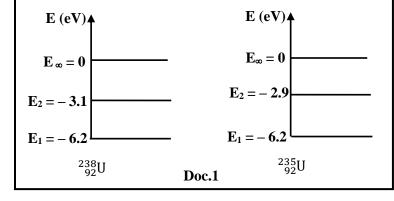
Determine the expression of the voltage u_{coil} across the terminals of the coil in terms of L, ω and t.

- 5) Using the results of part 3 and 4, show that L = 0.204 H.
- 6) Indicate the value of the phase difference between ug and i.
- 7) A phenomenon takes place in the circuit. Name this phenomenon.
- 8) Deduce the value of C knowing that the angular frequency $\omega = 300\pi$ rad/s.

Exercise 2 (6.5 points)

Ionization and fission of uranium

The aim of this exercise is to study the ionization and the fission of a uranium isotope. Given:


 $1 \text{ eV} = 1.6 \times 10^{-19} \, \text{J}$; speed of light in vacuum: $c = 3 \times 10^8 \, \text{m/s}$; Planck's constant: $h = 6.6 \times 10^{-34} \, \text{J.s.}$ Mass of $^{235}_{92} \, \text{U}$ nucleus = 234.99342 u; $1u = 1.66 \times 10^{-27} \, \text{kg.}$

1- Ionizing one of the uranium isotopes

A monochromatic radiation of frequency $v = 8 \times 10^{14} \, \text{Hz}$ illuminates a sample of uranium containing the isotopes $^{235}_{92} \, \text{U}$ and $^{238}_{92} \, \text{U}$.

- **1-1**) Calculate, in Joules and in eV, the energy of a photon of the incident radiation.
- 1-2) Document 1 shows some of the energy levels of the isotopes ²³⁵₉₂U and ²³⁸₉₂U.

 The photons of the incident radiation can excite one of these isotopes of uranium from energy level E₁ to energy level E₂.

Specify which of the two isotopes will be excited.

- 1-3) Before it de-excites, the excited isotope receives another photon of same frequency v.
 - **1-3-1**) Show that this isotope will be ionized.
 - 1-3-2) Determine the maximum kinetic energy KE_{max} of the liberated electron.
- 1-4) This experiment shows evidence of one of the two aspects of light. Name this aspect.

2- Nuclear reaction

The isotope of uranium which undergoes fission in the nuclear power plant is uranium-235. One of the fission reactions of uranium-235 nucleus is given by:

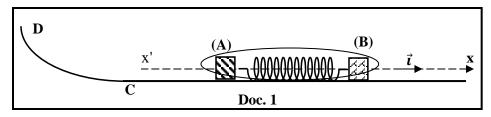
$$^{235}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{90}_{36}$ Kr + $^{X}_{56}$ Ba + 8^{1}_{0} n + γ

- **2-1**) This reaction is provoked. Why?
- **2-2**) What condition must the projectile satisfy in order to realize this reaction?
- **2-3**) Use one of the conservation laws to calculate x.
- **2-4)** The energy liberated by the fission of each nucleus of uranium-235 is about 200 MeV. In what forms does this energy appear?
- **2-5**) A nuclear power plant of efficiency 40 % furnishes an electric power 600 MW. Determine, in kg, the mass of uranium-235 consumed in 1 day in this power plant.

Exercise 3 (7 points)

Determination of the mass of a block and the stiffness of a spring

Consider two blocks, (A) of unknown mass m_A and (B) of mass $m_B = 0.8$ kg, and a spring (R) of negligible mass and of stiffness k. The aim of this exercise is to determine m_A and k. Neglect all the forces of friction and take g = 10 m/s².


1- First experiment: Determination of m_A

The spring is placed on a horizontal track. The spring is compressed between (A) and (B) by means of a light string (Document 1).

The center of mass of (A) and that of (B) belong to the same horizontal plane which is taken as a reference level for gravitational potential energy.

The x-axis extends positively to the right.

We burn the string, (A) and (B) are ejected in opposite directions.

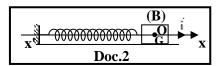
- **1-1**) Name the external forces acting on the system [(A), (B) and (R)].
- **1-2)** Deduce that the linear momentum of the system [(A), (B) and (R)] is conserved during the motion of (A) and (B) on the horizontal track.
- **1-3**) The velocity of the center of mass of block (B) just after ejection is $\vec{V}_B = 0.75 \vec{\iota}$ (m/s).
 - **1-3-1**) Determine the linear momentum \vec{P}_A of block (A).
 - **1-3-2**) Deduce in terms of m_A the velocity \overrightarrow{V}_A of the center of mass of (A) just after ejection.
- **1-4**) Block (A) continues its motion and reaches a curvilinear path CD situated in the vertical plane (Document 1). The maximum height attained by the center of mass of (A) above the reference level is $h_{\text{max}} = 5$ cm.
 - **1-4-1)** Apply the principle of conservation of mechanical energy to the system [(A), Earth] to determine the magnitude V_A of \overrightarrow{V}_A .
 - **1-4-2)** Deduce the value of the mass m_A .

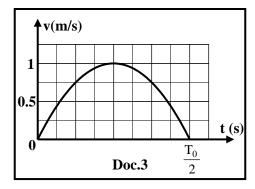
2- Second experiment: Determination of k

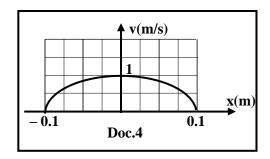
We fix block (B) to one of the ends of the spring (R), the other end of the spring is attached to a fixed support (Document 2).

At equilibrium, (B) is at O taken as an origin of abscissa of the axis x'x.

(B) is displaced, from point O along the axis x'x by a distance X_m in the negative direction, and then it is released without initial velocity at the instant $t_0 = 0$. At an instant t, the abscissa of the center of mass G of (B) is x and the algebraic measure of its velocity is v.


During the motion of (B) between $t_0=0$ and $t=\frac{T_0}{2}$ [T_0 is the


proper period of the oscillations of (B)], an appropriate system traces the graphs of documents (3) and (4).


Document (3): represents the variation of the speed of G as a function of time.

Document (4): represents the variation of the speed of G as a function of the abscissa x.

- **2-1**) Determine, by referring to document (3), the value of the maximum kinetic energy of (B).
- **2-2**) Deduce the value of the maximum elastic potential energy of the system [(R), (B), Earth].
- **2-3**) Indicate, by referring to document (4), the value of X_m .
- **2-4)** Deduce the value of k.

	دورة السعام 2017 الاستثنائيّة الاثنين في 7 آب 2017	امتحانات الشهادة الثانوية العامة الفرع: علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية	
	الا <u>ــين ــين ــين ــين</u>		دائرة الامتحانات الرسميّة	
الاسم		مسابقة في مادة الفيزياء		
الرقم		المدةّ: ساعتان		

	Exercise 1 : Determination the capacitance of a capacitor			
Question	Answer		mark	
1		K Y_1 E U (L, r) D	0.5	
•	2-1 $U_{\max(l)}$	$ \max(g) = y \times Sv_1 = 5V = y \times Sv_2 = 6V $	0.5 0.5	
2		$\frac{\pi d}{D} = \frac{\pi}{2} rad.$	0.5	
3	$u_{coil} = 6\cos(\omega t + \frac{\pi}{2}) = -6\sin(\omega t)$		0.75	
4	$u_{coil} = L\frac{di}{dt} = -L \times 9.375 \pi sin(\omega t).$		1	
5	$u_{\text{coil}}\text{=}\ u_{\text{coil}}$, then 6 = L $\times 9.375\ \pi$; then $L=0.204\ H.$		1	
6	zero		0.5	
7	Current resonance		0.5	
8	Current resonance, $LC(\omega)^2=1, \ C=5.518 \ \mu F.$		0.75	

Exercis	Exercise 2: Ionization and fission of uranium				
Ques	tion	Answer	mark		
	1	E = hv $E = 6.6 \times 10^{-34} \times 8 \times 10^{14} = 5.28 \times 10^{-19} J$ E = 3.3 eV	0.25 0.5 0.25		
	2	$E = 3.3 \text{ eV} = E_2 - E_1 \text{ for } {}^{235}_{92}\text{U}$ ${}^{235}_{92}\text{U} \text{ can be excited}$	0.5 0.25		
1	3 -	$E_{ionisation} = E_{\infty} - E_2 = 2.9eV$ $E_{photon} > 2.9 \text{ eV}, \text{ the isotope can be ionized}$	0.25 0.5		
		$E_{\text{photon}} = (E_{\infty} - E_2) + K.E_{\text{max}} = E_{\text{ionisation}} + K.E_{\text{max}}$ $K.E_{\text{max}} = 0.4 \text{ eV}$	0.5 0.5		
	4	Aspect corpuscular of light	0.25		
	1	Since it has an external intervention (bombarded by a neutron)	0.25		
	2	Thermal neutron $\underline{\mathbf{or}}$ slow neutron $\underline{\mathbf{or}}$ KE ≈ 0.025 eV	0.25		
2	3	Law of conservation of mass number: $x = 138$	0.5		
	4	Kinetic energy of emitted nuclei, KE of emitted particles, energy of photons γ	0.5		
	5	$\begin{split} E_{elect} &= P \times t = 600 \times 10^6 \times 24 \times 3600 = 5.184 \times 10^{13} J \\ efficiency &= \frac{E_{'electrique}}{E_{nucleaire}} \; ; \; E_{nuclear} = E_{elect} \frac{100}{40} = 1.296 \times 10^{14} J \\ m(^{235}_{92}U) &= 234.99342 \; u = 234.99342 \times 1,66 \times 10^{-27} \; kg = 3.90 \times 10^{-25} \; kg \\ 200 \; MeV &= 200 \times 1,6 \times 10^{-13} \; J = 3.20 \times 10^{-11} J \\ m_{totale} &= \frac{1.296 \times 10^{14} \times 3.90 \times 10^{-25}}{3.20 \times 10^{-11}} = 1.58 \; kg \end{split}$	1.25		

Exe	Exercise 3: Determination of the mass of a block and the stiffness of a spring			
Que	Question Answer		Mark	
	1-1		Weight $m_A \vec{g}$ of (A), normal reaction \vec{N}_A on (A), Weight $m_B \vec{g}$ de (B), normal reaction \vec{N}_B on (B).	0.5
	1-2		$\Sigma \vec{F}_{\rm ext} = \frac{d\vec{P}}{dt}$, then $m_A \vec{g} + \vec{N}_A + m_B \vec{g} + \vec{N}_B = \vec{0} = \frac{d\vec{P}}{dt}$, The linear momentum of the system (A, B, spring) is conserved.	0.75
1	3	1	$\vec{P}_{initial} = \vec{P}_{final}$, then $\vec{0} = \vec{P}_A + \vec{P}_B$, $\vec{P}_A = -\vec{P}_B$ $\vec{P}_A = -m_B \vec{V}_B = -0.8 \times 0.75 \vec{\iota} = -0.6 \vec{\iota}$ (kg.m/s)	1
		2	$\vec{P}_{A} = m_{A} \vec{V}_{A}$, $\vec{V}_{A} = -\frac{0.6}{m_{A}} \vec{\iota} (m/s)$.	0.5
	4	1	Let F the maximum point reached by (A) $ME_1 = ME_2 \ , \frac{1}{2} \ m_A \ V_A^2 \ + m_A \ g \ h_A = \frac{1}{2} \ m_A \ V_F^2 \ + m_A \ g \ h_{max}$ $\frac{1}{2} \ m_A \ V_A^2 \ = m_A \ g \ h_{max} \ , V_A = \sqrt{2 \ \times g \ \times \ h_{max}} \ = \sqrt{2 \ \times 10 \ \times 0.05} = 1 \ m/s$	1.25
		2	$V_{\rm A} = \frac{0.6}{m_{\rm A}} =$ 1, then $m_{\rm A}$ = 0.6 kg.	0.5
	2	2-1	Graphically $V_{max} = 1m/s$ $KE_{max} = \frac{1}{2} m_B V_{max}^2 = 0.4 J$	0.75
2	2-2		The mechanical energy of the system is conserved: $PE_{max} = KE_{max} = 0.4 J$	0.5
	2	2-3	X _{max} = 10 cm	0.5
	2	2-4	$\frac{1}{2}$ k $X_{max}^2 = 0.4$ then k = 80 N/m	0.75