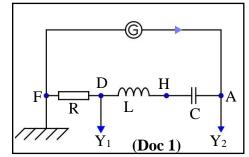
المادة: الفيزياء الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم 2 المدّة: ساعتان

(يراعى تعليق الدروس والتوصيف المعدل للعام الدراسي 2016-2017 وحتى صدور المناهج المطورة)

This test includes three mandatory exercises. The use of non-programmable calculators is allowed.


Exercise 1 (7 points) Effect of the frequency on the current

The circuit, represented in the adjacent document (Doc 1), includes in series:

- A generator (G) delivering, across its terminals, an alternating voltage, $u_{AF} = u_G = 8\sin(2\pi ft)$ (S.I.);
- A capacitor of capacitance $C = 0.265 \mu F$;
- A coil of inductance L = 31.833 mH and of negligible resistance;
- A resistor of resistance $R = 100 \Omega$.

The circuit carries then an alternating current i of expression:

 $i = I_m \sin (2\pi ft + \varphi)$ (S.I.).

The aim of this exercise is to study the effect of the frequency f of u_G on the amplitude I_m of i and on the phase difference φ between i and u_G.

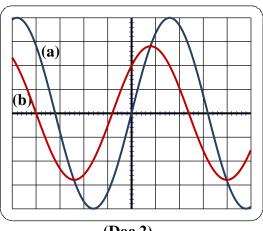
An oscilloscope, connected as shown in the document (Doc.1), is used to display the voltages u_G and $u_R = u_{DF}$. The vertical sensitivity, of both channels, is the same in all the experiments: $S_V = 2 \text{ V/div}$.

1^{rst} experiment 1)

We set the frequency at $f = f_1 = 1500$ Hz. We observe on the screen of the oscilloscope the waveforms displayed in the adjacent document (Doc.2).

- **1-1**) Identify the waveforms (a) and (b).
- **1-2)** Determine the phase difference φ_1 between i and u_G .
- **1-3**) Calculate the amplitude I_{1m} of the current i.

2nd experiment. 2)

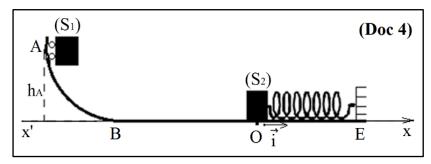

The frequency f is increased to $f = f_0$, f_0 being the proper frequency of the (RLC) series circuit.

We notice that the waveforms obtained coincide. The circuit is thus the seat of a certain phenomenon.

- **2-1)** Give the name of the physical phenomenon obtained.
- **2-2**) Give the value of the new phase difference φ_2 between i and u_G .
- **2-3**) Deduce the value of f_0 and the new amplitude I_{2m} of i.

3) 3rd experiment

- **3-1**) We measure I_m and φ for three other values of f; the results are tabulated as shown in the adjacent table (Doc 3). Complete this table.
- 3-2) Referring to the table (Doc 3), draw the graph representing the variation of I_m as a function of f.
- f (Hz) 1000 1500 2220 $f_0 = ?$ 2500 $I_{m}(A)$ 0.02 0.04 0.03 φ (rd) -1.33 1.04 1.2 (**Doc 3**)
- 3-3) Conclude about the effect of f on the amplitude I_m of i and on the sign of the phase difference φ between i and u_G.


(Doc 2)

Exercise 2 (7 points)

Energies and collision

A particle (S_1) , of mass $m_1 = 200$ g, is released from rest at the point A on a track ABOE, found in a vertical plane, as shown in the adjacent document (Doc 4).

The part AB, very smooth, along which we can neglect the force of friction, has the shape of a circular arc of radius h_A , and the part BO, a rough part, along which the force of friction \vec{f} is supposed constant,

is a rectilinear and horizontal path with BO = 1 m.

The particle (S_1) reaches the point B with the speed $v_{1B} = 4$ m/s, then it covers the track BO to reach the point O with the speed $v_{1O} = 2$ m/s.

At O, (S_1) enters into a head-on collision with a particle (S_2) , of mass $m_2 = 400$ g, initially at rest and connected to the end of a horizontal spring of stiffness k = 100 N/m whose other end is fixed at E.

Take the horizontal plane containing BO as a gravitational potential energy reference level. Take $g = 10 \text{ m/s}^2$.

- 1) Conservation and non-conservation of the mechanical energy.
 - **1-1**) Applying the principle of conservation of the mechanical energy of the system $[(S_1), Earth]$, determine h_A .
 - 1-2) Determine the work done by the force of friction \vec{f} along BO.
 - **1-3**) Deduce the magnitude f of the force of friction \vec{f} along BO.
- 2) Elastic collision.

The collision between the particles (S_1) and (S_2) is perfectly elastic. All the velocities, before and after the collision, are along the horizontal axis x'Ox.

- **2-1**) Determine the speed v'_{10} of (S_1) and v'_{20} of (S_2) just after the collision.
- **2-2**) Neglecting the force of friction between (S_2) and the track, just after the collision, calculate the maximum compression $x_m = OD$ of the spring.
- 2-3) In fact, the force of friction \overrightarrow{f}' between (S_2) and the track, just after the collision, is not negligible and the maximum compression of the spring is $x'_m = OD' = 6.4$ cm.
 - **2-3-1**) Determine the decrease in the mechanical energy of the system $[(S_2)$, Earth, spring], between O and D'.
 - **2-3-2**) In what form of energy does this decrease appear?

Exercise 3 (6 points) Radioactivity of Thallium

The radioactive isotope of Thallium $^{207}_{81}\text{Tl}$ is a β^- emitter, of radioactive period 135 days. The disintegration of a Thallium 207 nucleus produces a daughter nucleus, the lead nucleus $^{A}_{Z}\text{Pb}$. The kinetic energy of the emitted β^- particle is KE (β^-) = 0.70 MeV. This disintegration is accompanied by the emission of a gamma radiation (γ) of energy E(γ), and an antineutrino $^{0}_{0}\overline{\nu}$ of energy E($^{0}_{0}\overline{\nu}$) = 0.10 MeV.

The equation of disintegration is given by: $^{207}_{81}\text{Tl} \longrightarrow ^{A}_{Z}\text{Pb} + ^{0}_{-1}\text{e} + ^{0}_{0}\overline{\text{v}} + \gamma$

$$\begin{array}{ll} m\left({}_{Z}^{2}Pb\right)=206.9759~u; & m\left({}_{81}^{207}Tl\right)=206.9775~u; & m\left({}_{-1}^{0}e\right)=5.486\times10^{-4}~u; \\ 1~u=931.5~MeV/c^{2}; & 1~eV=1.6\times10^{-19}~J; & N_{A}=6.023\times10^{23}. \end{array}$$

- 1)
- **1-1**) Calculate A and Z specifying the used laws.
- **1-2**) Define the radioactive period of a substance.
- **1-3**) Calculate the decay constant λ of Thallium 207.
- **1-4)** Interpret the emission of the γ radiation.
- **1-5**) Knowing that the Thallium nucleus is initially at rest and the kinetic energy of the daughter nucleus is negligible, determine E (γ), the energy of the emitted photon γ .
- 2) In an energetic study concerning the β -emission by a sample of 1 g of Thallium freshly prepared, an experimenter, during the first day of disintegration, detects the emitted electrons to determine the maximum average power produced by these electrons.
 - **2-1**) Calculate the initial number of Thallium nuclei contained in this sample.
 - **2-2**) Determine, in Bq, the initial value of the activity of this radioactive sample.
 - **2-3**) During the first day:
 - **2-3-1**) Calculate the number of the emitted electrons.
 - **2-3-2**) Determine, in joules, the energy of the emitted β -particles.
 - **2-3-3**) Deduce the average power of the emitted electrons.

المادة: الفيزياء الشهادة: الثانوية العامّة الفرع: علوم الحياة نموذج رقم 2 المدّة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: العلوم

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

Question	(7 points) Effect of the frequency of Answer	•	Mark
1-1	$U_{mG} > U_{mR}$ with the same vertical sensitivity, (a) rep	resents u _G and (b) represents u _R .	1/2
1-2	$ \varphi_1 = \frac{2\pi \times 0.8}{6.4} = \frac{\pi}{4} \text{ rd}$	•	1/2
	But the waveform (b) leads in phase the waveform	(a) so up (or i) leads uc because	
	u_R reaches the maximum value before u_G , then $\phi_1 =$		1./
1 2		4 74.	1/2
1-3 2-1	$I_{1m} = U_{Rm}/R = 0.056 \text{ A}$ Current resonance.		1/2
2-1 2-2	$\phi_2 = 0$		1/4
2-3			1/2
- 3	$LC\omega^2 = 1$ with $\omega = 2\pi f_0$, then $f_0 = \frac{1}{2\pi\sqrt{LC}} = 1733$ Hz.		1/2
	In case of current resonance, the circuit behaves as $I_{2m} = U_{mG}/R = 8/100 = 0.08A$	a pure resistor. So:	1/2
3-1	$12m - U_{\text{mG}}/K - 6/100 - 0.06A$		
<i>3</i> 1	f (Hz) 1000 1500 f ₀ = 1733 2	2220 2500	
		0.04 0.03	1/2
		1.04 1.2	
		<u> </u>	
3-2	0.1 ∱lm (A)		
	0.09		
	0.09		
	0.08		
	0.07		
	0.06		
	0.05		
	0.04		1
	0.04		1
	0.03		
	0.02		
	0.01		
		f (Hz)	
	0 1000 2000	3000	
3-3	When f increases, for $f < f_0$, I_m increases and i leads u_G in phase; $\phi > 0$.		1/2
	For $f = f_0$, I_m takes a maximum value and i and u_G a		1/2
	When f increases, for $f > f_0$, I_m decreases and i lags	behind u_G in phase; $\varphi < 0$.	1/2

Exercise 2 (7 points) Energies and collisions

Question	(7 points) Energies and collisions Answer	Mark
1-1	ME(A) = ME(B)	1,1411
	$PE_g(A) + KE(A) = PE_g(B) + KE(B)$	
	$m_1gh_A + 0 = 0 + \frac{1}{2}m_1(v_{1B})^2$	1/2
	$h_{1} = \frac{1/2(V_{1B})^2}{1}$	
	g	
	$h_{A} = \frac{\frac{1}{2}(v_{1B})^{2}}{g}$ $h_{A} = \frac{\frac{1}{2}(4)^{2}}{10}$	
		3/4
1-2	$h_A = 0.8 \text{ m}$ Explanation:	1
1-2	$ME(O) - ME(B) = W(\vec{f})_{B \to O}$	
	$PE_{g}(O) + KE(O) - PE_{g}(B) - KE(B) = W(\vec{f})_{B \to O}$	
	$0 + \frac{1}{2}m_1(v_{10})^2 - 0 - \frac{1}{2}m_1(v_{1B})^2 = W(\vec{f})_{B\to 0}$	
		1/2
	$W(\vec{f})_{B\to O} = \frac{1}{2} \times 0.2 \times (2)^2 - 0 - \frac{1}{2} \times 0.2 \times (4)^2$	2/
1-3	$W(\vec{f})_{B\to O} = -1.2 \text{ J}$ $W(\vec{f})_{B\to O} = \vec{f}. \overrightarrow{BO} = -f \times BO$	3/4
1-3		
	$f = -\frac{W(\tilde{f})_{B \to O}}{BO}$	
	$f = -\frac{-1.2}{1} = 1.2 \text{ N}$	1
2-1	During the collision, the linear momentum of the system $[(S_1),(S_2)]$ is conserved:	
	$\vec{p}_{before} = \vec{p}_{after}$	
	In algebraic values along the positive direction:	
	$m_1 v_{1O} + 0 = m_1 v'_{1O} + m_2 v'_{2O}$	
	$m_1 (v_{10} - v'_{10}) = m_2 v'_{20}$ (equation 1)	
	The collision being elastic, then the kinetic energy of the system is conserved:	
	$KE_{before} = KE_{after}$	
	$\frac{1}{2}m_1(v_{1O})^2 + 0 = \frac{1}{2}m_1(v_{1O})^2 + \frac{1}{2}m_2(v_{2O})^2$	
	$m_1(v_{1O} - v'_{1O})(v_{1O} + v'_{1O}) = m_2(v'_{2O})^2$ (equation 2)	
	Using both equations, (equation 2) and (equation 1), we get:	
	$v_{10} + v'_{10} = v'_{20}$ (equation 3)	
	•	
	Using the equations, (equation 1) and (equation 3), we get:	
	$V'_{1O} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) V_{1O}$	1
	\1 ·2/	1
	Which gives: $v'_{10} = -2/3 = -0.67 \text{ m/s}$	
	then replace in (equation 3), we get: $v'_{2O} = 4/3 = 1.33$ m/s.	1/2

2-2	The mechanical energy of the system [(S ₂), spring, Earth] is conserved.	
	ME(O) = ME(D)	
	$PE_{g}(O) + PE_{e}(O) + KE(O) = PE_{g}(D) + PE_{e}(D) + KE(D)$	
	$0 + 0 + \frac{1}{2}m_2(v'_{2O})^2 = 0 + \frac{1}{2}k(x_m)^2 + 0$	1/2
	$m_2(v'_{2O})^2 = k(x_m)^2$	
	$x_{\rm m} = (v'_{\rm 2O}) \sqrt{\frac{m_2}{k}}$	
	$x_{\rm m} = \frac{4}{3} \sqrt{\frac{0.4}{100}}$	
	$x_m = OD = 0.084 \text{ m} = 8.4 \text{ cm}$	1/2
2-3-1	The decrease in the mechanical energy of the system $[(S_2), Earth, spring]$ is equal to:	
	$\Delta ME = \frac{1}{2}m_2(v_{2O}^2)^2 - \frac{1}{2}k(x_m^2)^2 = \frac{1}{2} \times 0.4 \times (\frac{4}{3})^2 - \frac{1}{2} \times 100 \times (0.064)^2 = 0.15 J$	1/2
2-3-2	This decrease appears in the form of thermal energy (heat).	1/2

Exercise 3 (6 points) Radioactivity of Thallium

Question	Answer	Mark
1-1	By applying Soddy's laws:	1/4
	Conservation of the mass number: $207 = A + 0 + 0 \implies A = 207$	1/4
	Conservation of the charge number: $81 = Z - 1 + 0 \implies Z = 82$	1/4
1-2	The radioactive period of a substance is the time interval at the end of which the	
	activity becomes equal to half of its initial value.	1/2
1-3	$\lambda = \frac{\ln 2}{T} = \frac{0.693}{135 \times 24 \times 3600} = 5.94 \times 10^{-8} \text{s}^{-1}$	1/2
1-4	The Lead daughter nucleus, produced by the decay, is obtained in an excited state;	
	it will last, in this state, for a short time, after which, it undergoes a downward	
	transition and this de-excitation is accompanied by the emission of a γ radiation.	1/4
1-5	The law of conservation of total energy:	
	$m(T1).c^2 = m(Pb).c^2 + m(e^-).c^2 + KE(e^-) + E(\gamma) + E(\frac{0}{0}\overline{v})$	1/2
	so $\Delta \text{m.c}^2 = (206.9775 - 206.9759 - 5.486 \times 10^{-4}) \times 931.5$	
	and $\Delta m.c^2 = 0.70 + E(\gamma) + 0.10$	
	then: $E(\gamma) = 0.97938 - 0.80 = 0.179 \text{ MeV}$	1/2
2-1	$\frac{m}{M} = \frac{N_0}{N_A}$ then $N_0 = 2.9096 \times 10^{21}$ nuclei.	1/2
2-2	$A_0 = \lambda N_0 = 5.94 \times 10^{-8} \times 2.9096 \times 10^{21} = 1.7283 \times 10^{14} \text{ Bq}$	1/2
2-3-1	The number of nuclei of thallium remaining at the end of one day:	
	$N_1 = N_0 e^{-\lambda t} = 2.9096 \times 10^{21} e^{(-5.94 \times 10^{-8} \times 24 \times 3600)} = 2.8947 \times 10^{21} \text{ nuclei}$	1/2
	The number of disintegrated nuclei is: $N = N_0 - N_1 = 1.49 \times 10^{19}$ nuclei	
	But the number of emitted electrons is equal to the number of disintegrated nuclei	
	Then: $N_{e-} = 1.49 \times 10^{19}$ electrons	1/2
2-3-2	$E = N_{e-} \times KE(\beta^{-}) = 1.49 \times 10^{19} \times 0.70 = 1.043 \times 10^{19} \text{ MeV} = 1.668 \times 10^{6} \text{ J}$	1/2
2-3-3	$P_{av} = E/\Delta t = 1.668 \times 10^6/(24 \times 3600) = 19.3 \text{ W}$	1/2