	الهيئة الأكاديميّة المشتركة قسم: العلوم	

نموذج مسابقة (يراعي تُليق الاروس والتوصيف المعدّل للعام الار اسي 2016-2017 وحتى صدور المناهج المطوّرة)
This test is made up of three obligatory exercises in four pages.
The use of non-programmable calculators is allowed.

Exercise 1 (6½ points) Young's slits

Consider the Young's slits device made up of two very thin and horizontal slits S_{1} and S_{2} separated by a distance $\mathrm{a}=1 \mathrm{~mm}$, a screen (E) parallel to the plane containing S_{1} and S_{2} and a monochromatic light source S.
The screen (E) is at a distance $\mathrm{D}=2 \mathrm{~m}$ from the midpoint I of $\left[\mathrm{S}_{1} \mathrm{~S}_{2}\right]$.
The light source (S) is on the perpendicular bisector of $\left[\mathrm{S}_{1} \mathrm{~S}_{2}\right]$. This bisector meets the screen (E) at a point O .

The wavelength in the air of the monochromatic light is $\lambda=650 \mathrm{~nm}$.

1) A pattern is observed on the screen (E). Indicate the name of the correspondent phenomenon.
2) State and explain the conditions on S_{1} and S_{2} to obtain this pattern.
3) Consider a point M of the pattern observed on the screen (E) such as $\overline{\mathrm{OM}}=\mathrm{x}$. Given: $\mathrm{d}_{1}=\mathrm{S}_{1} \mathrm{M}$ and $\mathrm{d}_{2}=\mathrm{S}_{2} \mathrm{M}$. Write the relation that gives the path difference $\delta=\mathrm{d}_{2}-\mathrm{d}_{1}$ in terms of a, D and x.
4) Define the interfringe distance i .
5) Give the expression of i in terms of λ, D and a then calculate its value.
6) The point O coincides with the centre of a fringe called central fringe.

6-1) Calculate the path difference δ at O .
6-2) Specify if this fringe is bright or dark.
7) Let N be the centre of a fringe such as $\delta=2,275 \mu \mathrm{~m}$. Specify if this fringe is bright or dark.
8) S is at a distance $d=10 \mathrm{~cm}$ from I. We displace S vertically upwards of a distance $y=1 \mathrm{~cm}$ towards S_{1}. The new path difference is written : $\delta^{\prime}=\frac{a x}{D}+\frac{a y}{d}$. Tell in which direction the central fringe moves (towards S_{1} or towards S_{2}) and calculate the displacement.

Exercise 2 ($61 / 2$ points)

(RC) circuit.

The electric circuit of the figure (Doc 1) is composed of:

- a generator supplying across its terminals a constant voltage $\mathrm{E}=8 \mathrm{~V}$;
- a resistor of unknown resistance R ;
- a capacitor of capacitance $\mathrm{C}=100 \mu \mathrm{~F}$, initially discharged;
- a switch K.

At the instant $\mathrm{t}=0$, we close the switch K .
At an instant t, le capacitor has a charge q and the circuit carries a current i.

1) Redraw the figure (Doc 1) and show the connections of an oscilloscope that displays the voltage $u_{G}=E$ across the generator and the voltage $u_{C}=u_{A B}$ across the capacitor.
2) Write the expression of the current i in terms of q.
3) Deduce the expression of i in terms of the capacitance C and the voltage u_{C}.
4) Determine the differential equation in terms of uc.
5) The solution of this differential equation is: $u_{C}=D\left(1-e^{-\frac{t}{\tau}}\right)$. Determine the expressions of the positive constants D and τ in terms of E, R and C .

(Doc 1)
6) Determine, at the instant $t=\tau$, the voltage u_{C} in terms of E.
7) Using the graph of $u_{C}=f(t)$ of the figure (Doc 2) below:

7-1) Determine the value of τ.
7-2) Deduce the value of the resistance R.

8) Determine the expression of the current i in terms of t .
9) Find the value of i in permanent regime.

Exercise 3 (7 points)

Horizontal elastic pendulum.

An air puck (S) of mass $\mathrm{m}=709 \mathrm{~g}$ is attached to the free end of a spring (R) of un-jointed turns, of negligible mass and of stiffness $\mathrm{k}=7 \mathrm{~N} . \mathrm{m}^{-1}$.

This puck, of a centre of mass G, may slide without friction on a horizontal rail (Doc 1). The figure shows a horizontal axis Ox of origin O . At equilibrium, G coincides with O .
At the instant $\mathrm{t}_{0}=0,(\mathrm{~S})$ is displaced 3 cm from O in the positive direction and released without initial velocity.
At an instant t, x is the abscissa of G and $v=\frac{d x}{d t}$ is the algebraic measure of its velocity.

(Doc 1)

1) The mechanical energy of the system ((S), (R), Earth) is conserved.

1-1) Determine the differential equation of the movement.
1-2) Verify that $x=x_{m} \cos \left(\sqrt{\frac{k}{m}} t+\varphi\right)$ is the solution of this differential equation for any value of the constants x_{m} and φ.
1-3) Calculate the values of x_{m} and φ.
2) Write down the formula that gives the expression of the natural period of the movement T_{0} in terms of k and m then calculate its value.
3) The figure (Doc 2) below shows the curves of the variation of the kinetic energy E_{k} of (S), of the elastic potential energy E_{pe} of (R) and of the mechanical energy E_{m} of the system ((S), (R), Earth). Identify by the letters (A, B or C) the curves $E_{k}, E_{p e}$ and E_{m} of the figure (Doc 2). Justify the answers.
(Doc 2)

4) The curves A and C are sine curves of a period T . Using the graph of figure (Doc 2) :

4-1) pick up the value of the period T;
4-2) compare its value to the natural period T_{0} of the movement.

المادة: الفيزياء الثشهادة: الثانوية العامّة الفرع: علوم الحياة نموذج رقم 1 المدّة: ساعتان	الهيئة الأكاديميّة المشتركة قسم: اللطوم	
20	والّوصيف المدِّل للعام الدا	أسس التصحيح (تراعي

Exercise 1 ($61 / 2$ points) Young's slits		
Question	Answer	Mark
1	Interference	1/4
2	The light sources must be synchronous \Rightarrow they must have the same frequency The light sources must be coherent \Rightarrow they must keep a constant phase difference	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$
3	$\delta=\frac{\mathrm{ax}}{\mathrm{D}}$	$1 / 4$
4	The interfringe distance is the distance between the centers of two consecutive fringes of the same nature	1/2
5	$\begin{aligned} & \mathrm{i}=\frac{\lambda \mathrm{D}}{\mathrm{a}} \\ & \Rightarrow \mathrm{i}=\frac{650 \times 10^{-9} \times 2}{10^{-3}} \Rightarrow \mathrm{i}=1.3 \times 10^{-3} \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \end{aligned}$
6-1	$\begin{aligned} & \mathrm{d}_{2}=\mathrm{d}_{1} \\ & \Rightarrow \delta=\mathrm{d}_{2}-\mathrm{d}_{1}=0 \\ & \text { or } \\ & \mathrm{x}=0 \\ & \Rightarrow \delta=\frac{\mathrm{ax}}{\mathrm{D}}=0 \end{aligned}$	$1 / 4$ $1 / 4$ $1 / 4$ $1 / 4$
6-2	$\delta=0 \quad \text { so } \quad \delta=\mathrm{k} \lambda$ with $\mathrm{k}=0 \in \mathbf{Z}$ The interference is constructive and the fringe is bright	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$
7	$\frac{\delta}{\lambda}=\frac{2.275 \times 10^{-6}}{650 \times 10^{-9}}=3.5$ so $\frac{\delta}{\lambda}=\mathrm{k}+\frac{1}{2}$ with $\mathrm{k}=1 \in \mathbf{Z}$ The interference is destructive and the fringe is dark	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & \hline \end{aligned}$
8	$\begin{aligned} & \delta=\frac{\mathrm{ax}_{\mathrm{O}^{\prime}}}{\mathrm{D}}+\frac{\mathrm{ay}}{\mathrm{~d}}=0 \Rightarrow \mathrm{x}_{\mathrm{O}^{\prime}}=-\frac{\mathrm{y} \cdot \mathrm{D}}{\mathrm{~d}} \\ & \Rightarrow \mathrm{x}_{\mathrm{O}^{\prime}}=-\frac{10^{-2} \times 2}{10 \times 10^{-2}}=-0.2 \mathrm{~m} \end{aligned}$ The central fringe moves 0.2 m towards S_{2}	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline Question \& Answer \& Mark \\
\hline 1 \& \& 1/2 \\
\hline 2 \& \[
\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}
\] \& 1/2 \\
\hline 3 \& \[
\mathrm{q}=\mathrm{Cu}_{\mathrm{C}} \text { so } \mathrm{i}=\mathrm{C} \frac{\mathrm{du}_{\mathrm{C}}}{\mathrm{dt}}
\] \& 1/2 \\
\hline 4 \& \begin{tabular}{l}
Law of addition of voltages: \(u_{R}+u_{C}=E\) \\
Ohm's law: \(u_{R}=R i \Rightarrow u_{R}=R C \frac{d u_{C}}{d t}\) \\
The differential equation in terms of \(u_{C}\) is then: \(R C \frac{d u_{C}}{d t}+u_{C}=E\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\) \\
\hline 5 \& \begin{tabular}{l}
\[
\begin{aligned}
\& u_{C}=D\left(1-e^{-\frac{t}{\tau}}\right) \Rightarrow u_{C}=D-D e^{-\frac{t}{\tau}} \\
\& \frac{d u_{C}}{d t}=-D\left(-\frac{1}{\tau}\right) e^{-\frac{t}{\tau}}=\frac{D}{\tau} e^{-\frac{t}{\tau}} \\
\& a ̀ t=\infty \quad u_{C}=D\left(1-e^{-\frac{\infty}{\tau}}\right)=D(1-0)=D \quad \text { and } \quad u_{C}=E \quad \text { so } \quad D=E
\end{aligned}
\] \\
replace \(u_{C}\) et \(\frac{d u_{C}}{d t}\) and \(D\) by their expressions in the differential equation. \\
We get :
\[
\begin{aligned}
\& \operatorname{RC} \frac{\mathrm{E}}{\tau} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}+\mathrm{E}-\mathrm{Ee}^{-\frac{\mathrm{t}}{\tau}}=\mathrm{E} \\
\& \mathrm{RC} \frac{\mathrm{E}}{\tau} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}-\mathrm{Ee}^{-\frac{\mathrm{t}}{\tau}}=0 \\
\& \operatorname{Ee}^{-\frac{\mathrm{t}}{\tau}}\left(\frac{\mathrm{RC}}{\tau}-1\right)=0
\end{aligned}
\] \\
\(\mathrm{E} \neq 0 \quad\) and \(\quad \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}=0\) is not true for any \(\mathrm{t} ; \quad\) so \(\frac{\mathrm{RC}}{\tau}-1=0 \Rightarrow \frac{\mathrm{RC}}{\tau}=1 \Rightarrow\) \(\tau=\mathrm{RC}\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$

1

\hline
\end{tabular}

6	At $t=\tau ; \mathrm{u}_{\mathrm{C}}=\mathrm{E}\left(1-\mathrm{e}^{-\frac{\tau}{\tau}}\right)=\mathrm{E}\left(1-\mathrm{e}^{-1}\right) \approx 0,63 \mathrm{E}$	$1 / 2$
$7-1$	At $\mathrm{t}=\tau ; \mathrm{u}_{\mathrm{C}}=0.63 \mathrm{E}=0.63 \times 8=5.04 \mathrm{~V} \approx 5 \mathrm{~V}$ from the graph we get $: \tau=2 \mathrm{~s}$	$1 / 2$
$7-2$	$\mathrm{R}=\frac{\tau}{\mathrm{C}} \Rightarrow \mathrm{R}=\frac{2}{100 \times 10^{-6}}=2 \times 10^{4} \Omega$	$1 / 2$
8	$\mathrm{i}=\mathrm{C} \frac{\mathrm{du}_{\mathrm{C}}}{\mathrm{dt}}=\mathrm{C} \frac{\mathrm{E}}{\tau} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}=\mathrm{C} \frac{\mathrm{E}}{\mathrm{RC}} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}=\frac{\mathrm{E}}{\mathrm{R}} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}$	$1 / 2$
9	Permanent regime: $\mathrm{t}=\infty ; \mathrm{i}=\frac{\mathrm{E}}{\mathrm{R}} \mathrm{e}^{-\frac{\infty}{\tau}}=\frac{\mathrm{E}}{\mathrm{R}} \times 0=0 \mathrm{~A}$	$1 / 2$

Exercise 3 (7 points) Horizontal elastic pendulum.

\begin{tabular}{|c|c|c|}
\hline Question \& Answer \& Mark \\
\hline 1-1 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{mx}^{\prime 2} \Rightarrow \frac{\mathrm{~d}\left(\mathrm{E}_{\mathrm{k}}\right)}{\mathrm{dt}}=\frac{1}{2} \mathrm{~m}\left(2 \mathrm{x}^{\prime} \mathrm{x}^{\prime \prime}\right) \Rightarrow \frac{\mathrm{d}\left(\mathrm{E}_{\mathrm{k}}\right)}{\mathrm{dt}}=\mathrm{mx}^{\prime} \mathrm{x}^{\prime \prime} \\
\& \mathrm{E}_{\mathrm{pe}}=\frac{1}{2} k x^{2} \Rightarrow \frac{\mathrm{~d}\left(\mathrm{E}_{\mathrm{pe}}\right)}{\mathrm{dt}}=\frac{1}{2} \mathrm{k}\left(2 \mathrm{xx}^{\prime}\right) \Rightarrow \frac{\mathrm{d}\left(\mathrm{E}_{\mathrm{pe}}\right)}{\mathrm{dt}}=\mathrm{kxx}^{\prime} \\
\& \mathrm{E}_{\mathrm{pg}}=\text { constant because the rail is horizontal } \Rightarrow \frac{\mathrm{d}\left(\mathrm{E}_{\mathrm{pg}}\right)}{\mathrm{dt}}=0 \\
\& \mathrm{E}_{\mathrm{m}}=\mathrm{E}_{\mathrm{k}}+\mathrm{E}_{\mathrm{pe}}+\mathrm{E}_{\mathrm{pg}}
\end{aligned}
\] \\
The mechanical energy of the system (puck, spring, Earth) is conserved
\[
\begin{aligned}
\& E_{\mathrm{m}}=\text { constant } \Rightarrow \frac{\mathrm{d}\left(\mathrm{E}_{\mathrm{m}}\right)}{\mathrm{dt}}=0 \Rightarrow \frac{\mathrm{~d}\left(\mathrm{E}_{\mathrm{k}}\right)}{\mathrm{dt}}+\frac{\mathrm{d}\left(\mathrm{E}_{\mathrm{pe}}\right)}{\mathrm{dt}}+\frac{\mathrm{d}\left(\mathrm{E}_{\mathrm{pg}}\right)}{\mathrm{dt}}=0 \\
\& \Rightarrow \mathrm{mx}^{\prime} \mathrm{x}^{\prime \prime}+\mathrm{kxx}^{\prime}+0=0 \Rightarrow m x^{\prime}\left(\mathrm{x}^{\prime \prime}+\frac{\mathrm{k}}{\mathrm{~m}} \mathrm{x}\right)=0
\end{aligned}
\] \\
The mass of the system \(m \neq 0\) and \(x^{\prime}=0\) for any \(t\) is rejected because this corresponds to equilibrium
\[
\Rightarrow \mathrm{x}^{\prime \prime}+\frac{\mathrm{k}}{\mathrm{~m}} \mathrm{x}=0
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$

\hline 1-2 \& | $\begin{aligned} & x=x_{m} \cos \left(\sqrt{\frac{k}{m}} t+\varphi\right) \\ & x^{\prime}=-x_{m} \sqrt{\frac{k}{m}} \sin \left(\sqrt{\frac{k}{m}} t+\varphi\right) \\ & x^{\prime \prime}=-\frac{k}{m} x_{m} \cos \left(\sqrt{\frac{k}{m}} t+\varphi\right)=-\frac{k}{m} x \end{aligned}$ |
| :--- |
| replace x " by its expression in the differential equation: $-\frac{k}{m} x+\frac{k}{m} x=0$ is true for any x_{m} and φ. | \& $1 / 2$

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 1-3 \& \begin{tabular}{l}
At \(t=0 \mathrm{~s} ; \mathrm{x}^{\prime}=-\mathrm{x}_{\mathrm{m}} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \sin \left(\sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \mathrm{t}+\varphi\right)\) becomes \(\mathrm{x}_{0}^{\prime}=-\mathrm{x}_{\mathrm{m}} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \sin \varphi\) \(\mathrm{x}_{0}^{\prime}=-\mathrm{x}_{\mathrm{m}} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \sin \varphi=0 \Rightarrow \sin \varphi=0 \Rightarrow \varphi=0 \operatorname{rad}\) or \(\varphi=\pi \mathrm{rad}\) \\
Att \(=0 \mathrm{~s} ; \mathrm{x}=\mathrm{x}_{\mathrm{m}} \cos \left(\sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \mathrm{t}+\varphi\right)\) becomes \(\mathrm{x}_{0}=\mathrm{x}_{\mathrm{m}} \cos \varphi\) \\
For \(\varphi=0 \mathrm{rad}: \mathrm{x}_{0}=\mathrm{x}_{\mathrm{m}}=+3 \mathrm{~cm}\) (acceptable because \(\mathrm{x}_{\mathrm{m}}>0\)) \\
For \(\varphi=\pi \mathrm{rad}: \mathrm{x}_{0}=-\mathrm{x}_{\mathrm{m}}=+3 \mathrm{~cm} \Rightarrow \mathrm{x}_{\mathrm{m}}=-3 \mathrm{~cm}\) (rejected because \(\mathrm{x}_{\mathrm{m}}<0\))
\end{tabular} \& \(1 / 2\)

$1 / 2$

\hline 2 \& $$
\begin{aligned}
& \mathrm{T}_{0}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \\
& \Rightarrow \mathrm{~T}_{0}=2 \pi \sqrt{\frac{0,709}{7}}=2 \mathrm{~s}
\end{aligned}
$$ \& $1 / 2$

$1 / 2$

\hline 3 \& | The curve A corresponds to E_{pe} because at $\mathrm{t}=0 \mathrm{~s}, \mathrm{x} \neq 0$ but $\mathrm{E}_{\mathrm{pe}}=\frac{1}{2} \mathrm{kx}^{2}$ so $\mathrm{E}_{\mathrm{pe}}(0) \neq 0 \mathrm{~J}$ |
| :--- |
| The curve B corresponds to E_{m} because it has a constant value The curve C corresponds to E_{k} because at $t=0 \mathrm{~s}, \mathrm{v}=0 \mathrm{~m} / \mathrm{s}$ but $\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}$ so $\mathrm{E}_{\mathrm{k}}(0)=0 \mathrm{~J}$ | \& $1 / 2$

$1 / 2$

$1 / 2$

\hline 4-1 \& From the graph we get: $\mathrm{T}=1 \mathrm{~s}$ \& $1 / 4$

\hline 4-2 \& $\mathrm{T}=\mathrm{T}_{0} / 2$ \& $1 / 4$

\hline
\end{tabular}

