المادة: الفيزياء الشهادة: الثانوية العامّة الفرع: علوم الحياة نموذج رقم 1

لهيئة الأكاديمية المشتركة قسم: العلوم

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

This test is made up of three obligatory exercises in four pages.

The use of non-programmable calculators is allowed.

Exercise 1 (6½ points) Young's slits

Consider the Young's slits device made up of two very thin and horizontal slits S_1 and S_2 separated by a distance a=1 mm, a screen (E) parallel to the plane containing S_1 and S_2 and a monochromatic light source S.

The screen (E) is at a distance D = 2 m from the midpoint I of $[S_1S_2]$.

The light source (S) is on the perpendicular bisector of $[S_1S_2]$. This bisector meets the screen (E) at a point O.

The wavelength in the air of the monochromatic light is $\lambda = 650$ nm.

- 1) A pattern is observed on the screen (E). Indicate the name of the correspondent phenomenon.
- 2) State and explain the conditions on S_1 and S_2 to obtain this pattern.
- 3) Consider a point M of the pattern observed on the screen (E) such as OM = x. Given: $d_1 = S_1M$ and $d_2 = S_2M$. Write the relation that gives the path difference $\delta = d_2 d_1$ in terms of a, D and x.
- 4) Define the interfringe distance i.
- 5) Give the expression of i in terms of λ , D and a then calculate its value.
- **6**) The point O coincides with the centre of a fringe called central fringe.
 - **6-1**) Calculate the path difference δ at O.
 - **6-2)** Specify if this fringe is bright or dark.
- 7) Let N be the centre of a fringe such as $\delta = 2,275 \mu m$. Specify if this fringe is bright or dark.
- 8) S is at a distance d = 10 cm from I. We displace S vertically upwards of a distance y = 1 cm towards S_1 . The new path difference is written: $\delta' = \frac{ax}{D} + \frac{ay}{d}$. Tell in which direction the central fringe moves (towards S_1 or towards S_2) and calculate the displacement.

Exercise 2 (6½ points) (RC) circuit.

The electric circuit of the figure (Doc 1) is composed of:

- a generator supplying across its terminals a constant voltage E = 8 V;
- a resistor of unknown resistance R;
- a capacitor of capacitance $C = 100 \mu F$, initially discharged;
- a switch K.

At the instant t = 0, we close the switch K.

At an instant t, le capacitor has a charge q and the circuit carries a current i.

- Redraw the figure (Doc 1) and show the connections of an oscilloscope that displays the voltage $u_G = E$ across the generator and the voltage $u_C = u_{AB}$ across the capacitor.
- 2) Write the expression of the current i in terms of q.
- 3) Deduce the expression of i in terms of the capacitance C and the voltage u_C.
- 4) Determine the differential equation in terms of u_C.
- 5) The solution of this differential equation is: $u_C = D\left(1 e^{-\frac{t}{\tau}}\right)$. Determine the expressions of the positive constants D and τ in terms of E, R and C.

- 6) Determine, at the instant $t = \tau$, the voltage u_C in terms of E.
- 7) Using the graph of $u_C = f(t)$ of the figure (Doc 2) below:
 - **7-1**) Determine the value of τ .
 - **7-2**) Deduce the value of the resistance R.

- **8**) Determine the expression of the current i in terms of t.
- 9) Find the value of i in permanent regime.

Exercise 3 (7 points) Horizontal elastic pendulum.

An air puck (S) of mass m = 709 g is attached to the free end of a spring (R) of un-jointed turns, of negligible mass and of stiffness $k = 7 \text{ N.m}^{-1}$.

This puck, of a centre of mass G, may slide without friction on a horizontal rail (Doc 1). The figure shows a horizontal axis Ox of origin O. At equilibrium, G coincides with O.

At the instant $t_0 = 0$, (S) is displaced 3 cm from O in the positive direction and released without initial velocity.

At an instant t, x is the abscissa of G and $v = \frac{dx}{dt}$ is the algebraic measure of its velocity.

- 1) The mechanical energy of the system ((S), (R), Earth) is conserved.
 - **1-1**) Determine the differential equation of the movement.
 - 1-2) Verify that $x = x_m \cos \left(\sqrt{\frac{k}{m}} t + \phi \right)$ is the solution of this differential equation for any value of the constants x_m and ϕ .
 - **1-3**) Calculate the values of x_m and φ .
- Write down the formula that gives the expression of the natural period of the movement T_0 in terms of k and m then calculate its value.
- 3) The figure (Doc 2) below shows the curves of the variation of the kinetic energy E_k of (S), of the elastic potential energy E_p of (R) and of the mechanical energy E_m of the system ((S), (R), Earth). Identify by the letters (A, B or C) the curves E_k , E_p and E_m of the figure (Doc 2). Justify the answers.

- 4) The curves A and C are sine curves of a period T. Using the graph of figure (Doc 2):
 - **4-1**) pick up the value of the period T;
 - **4-2)** compare its value to the natural period T_0 of the movement.

المادة: الفيزياء الشهادة: الثانوية العامّة الفرع: علوم الحياة نموذج رقم 1 المدّة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: العلوم

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

Question	Answer	Mark
1	Interference	1/4
2	The light sources must be synchronous	1/4
	⇒ they must have the same frequency	1/4
	The light sources must be coherent	1/4
	⇒ they must keep a constant phase difference	1/4
3	$\delta = \frac{ax}{}$	
	$o = \frac{1}{D}$	1/4
4	The interfringe distance is the distance between the centers of two consecutive	
	fringes of the same nature	1/2
5	$i = \frac{\lambda D}{\lambda D}$	
	$1 = \frac{}{a}$	1/4
	$\Rightarrow i = \frac{650 \times 10^{-9} \times 2}{10^{-3}} \Rightarrow i = 1.3 \times 10^{-3} \text{ m}$	1/4
<i>.</i> . 1		1/
6-1	$\mathbf{d}_2 = \mathbf{d}_1$	1/4
	$\Rightarrow \delta = d_2 - d_1 = 0$	1/4
	$\begin{vmatrix} or \\ x = 0 \end{vmatrix}$	1/4
		74
	$\Rightarrow \delta = \frac{ax}{D} = 0$	1/4
6-2	D	1/4
0-2	$\delta = 0$ so $\delta = k\lambda$	1/4
	with $k = 0 \in \mathbf{Z}$	1/4
	The interference is constructive	1/4
7	and the fringe is bright	/4
/	$\frac{\delta}{\lambda} = \frac{2.275 \times 10^{-6}}{650 \times 10^{-9}} = 3.5$	1/4
		/-
	so $\frac{\delta}{\lambda} = k + \frac{1}{2}$ with $k = 1 \in \mathbf{Z}$	1/4
	The interference is destructive	1/4
	and the fringe is dark	1/4
8	$\delta = \frac{ax_{O'}}{D} + \frac{ay}{d} = 0 \implies x_{O'} = -\frac{y.D}{d}$	1/
		1/4
	$10^{-2} \times 2$	1/.
	$\Rightarrow x_{0'} = -\frac{10^{-2} \times 2}{10 \times 10^{-2}} = -0.2 \text{ m}$	1/4
	The central fringe moves 0.2 m	1/4
	towards S ₂	1/4

Exercice 2 (6½ points)

(RC) circuit.

Question	Answer	Mark
1	$\begin{array}{c c} & & & \\ \hline \end{array}$	1/2
2	$i = \frac{dq}{dt}$	1/2
3	$q = Cu_C$ so $i = C\frac{du_C}{dt}$	1/2
4	Law of addition of voltages: $u_R + u_C = E$ Ohm's law: $u_R = Ri \implies u_R = RC \frac{du_C}{dt}$	1/2
5	The differential equation in terms of u_C is then: $RC \frac{du_C}{dt} + u_C = E$	1/2
	$\begin{aligned} u_{C} &= D \left(1 - e^{-\frac{t}{\tau}} \right) \Rightarrow u_{C} = D - D e^{-\frac{t}{\tau}} \\ \frac{du_{C}}{dt} &= -D \left(-\frac{1}{\tau} \right) e^{-\frac{t}{\tau}} = \frac{D}{\tau} e^{-\frac{t}{\tau}} \\ a &t = \infty u_{C} = D \left(1 - e^{-\frac{\infty}{\tau}} \right) = D(1 - 0) = D \text{and} u_{C} = E \text{so} D = E \end{aligned}$ $replace u_{C} = t \frac{du_{C}}{dt} \text{and } D \text{ by their expressions in the differential equation.}$ $We get: : RC \frac{E}{\tau} e^{-\frac{t}{\tau}} + E - E e^{-\frac{t}{\tau}} = E$ $RC \frac{E}{\tau} e^{-\frac{t}{\tau}} - E e^{-\frac{t}{\tau}} = 0$ $E e^{-\frac{t}{\tau}} \left(\frac{RC}{\tau} - 1 \right) = 0$	1/2
	$E \neq 0$ and $e^{-\frac{t}{\tau}} = 0$ is not true for any t ; so $\frac{RC}{\tau} - 1 = 0 \Rightarrow \frac{RC}{\tau} = 1 \Rightarrow \tau = RC$	1/2

6	At $t = \tau$; $u_C = E\left(1 - e^{-\frac{\tau}{\tau}}\right) = E\left(1 - e^{-1}\right) \approx 0,63E$	1/2
7-1	At $t = \tau$; $u_C = 0.63E = 0.63 \times 8 = 5.04 \text{ V} \approx 5 \text{ V}$	
	from the graph we get : $\tau = 2 \text{ s}$	1/2
7-2	$R = \frac{\tau}{C} \implies R = \frac{2}{100 \times 10^{-6}} = 2 \times 10^4 \Omega$	1/2
8	$i = C\frac{du_C}{dt} = C\frac{E}{\tau}e^{-\frac{t}{\tau}} = C\frac{E}{RC}e^{-\frac{t}{\tau}} = \frac{E}{R}e^{-\frac{t}{\tau}}$	1/2
9	Permanent regime: $t = \infty$; $i = \frac{E}{R}e^{-\frac{\infty}{\tau}} = \frac{E}{R} \times 0 = 0A$	1/2

Exercise 3 (7 points) Horizontal elastic pendulum.

Exercise 5	(7 points) Horizontai elastic pendulum.	
Question	Answer	Mark
1-1	$E_k = \frac{1}{2}mv^2 = \frac{1}{2}mx'^2 \implies \frac{d(E_k)}{dt} = \frac{1}{2}m(2x'x'') \implies \frac{d(E_k)}{dt} = mx'x''$	1/2
	$E_{pe} = \frac{1}{2}kx^{2} \implies \frac{d(E_{pe})}{dt} = \frac{1}{2}k(2xx') \implies \frac{d(E_{pe})}{dt} = kxx'$	1/2
	$E_{pg} = constant because the rail is horizontal \Rightarrow \frac{d(E_{pg})}{dt} = 0$	
	$E_{\rm m} = E_{\rm k} + E_{\rm pe} + E_{\rm pg}$	
	The mechanical energy of the system (puck, spring, Earth) is conserved	
	$E_{\rm m} = {\rm constant} \Rightarrow \frac{d(E_{\rm m})}{dt} = 0 \Rightarrow \frac{d(E_{\rm k})}{dt} + \frac{d(E_{\rm pe})}{dt} + \frac{d(E_{\rm pg})}{dt} = 0$	
	$\Rightarrow mx'x'' + kxx' + 0 = 0 \Rightarrow mx'\left(x'' + \frac{k}{m}x\right) = 0$	1/2
	The mass of the system $m \neq 0$	
	and $x' = 0$ for any t is rejected because this corresponds to equilibrium	
	$\Rightarrow x'' + \frac{k}{m}x = 0$	1/2
1-2	$x = x_{m} \cos \left(\sqrt{\frac{k}{m}} t + \varphi \right)$	
	$x' = -x_{m} \sqrt{\frac{k}{m}} \sin \left(\sqrt{\frac{k}{m}} t + \varphi \right)$	
	$x'' = -\frac{k}{m} x_m \cos\left(\sqrt{\frac{k}{m}} t + \varphi\right) = -\frac{k}{m} x$	1/2
	replace x" by its expression in the differential equation:	
	$-\frac{k}{m}x + \frac{k}{m}x = 0$ is true for any x_m and φ .	1/2

1-3	At $t = 0$ s; $x' = -x_m \sqrt{\frac{k}{m}} \sin\left(\sqrt{\frac{k}{m}}t + \varphi\right)$ becomes $x'_0 = -x_m \sqrt{\frac{k}{m}} \sin\varphi$	
	$x'_0 = -x_m \sqrt{\frac{k}{m}} \sin \varphi = 0 \implies \sin \varphi = 0 \implies \varphi = 0 \text{ rad or } \varphi = \pi \text{ rad}$	1/2
	At $t = 0$ s; $x = x_m \cos\left(\sqrt{\frac{k}{m}}t + \varphi\right)$ becomes $x_0 = x_m \cos\varphi$	
	For $\varphi = 0$ rad: $x_0 = x_m = +3$ cm (acceptable because $x_m > 0$)	1/
	For $\varphi = \pi$ rad: $x_0 = -x_m = +3 \text{ cm} \Rightarrow x_m = -3 \text{ cm}$ (rejected because $x_m < 0$)	1/2
2	$T_0 = 2\pi \sqrt{\frac{m}{k}}$ $\Rightarrow T_0 = 2\pi \sqrt{\frac{0,709}{7}} = 2 s$	1/2
	$\Rightarrow T_0 = 2\pi \sqrt{\frac{0,709}{7}} = 2 s$	1/2
3	The curve A corresponds to E_{pe} because at $t = 0$ s, $x \ne 0$ but $E_{pe} = \frac{1}{2}kx^2$ so	
	$E_{pe}(0) \neq 0 J$	1/2
	The curve B corresponds to E_m because it has a constant value	1/2
	The curve C corresponds to E_k because at $t = 0$ s, $v = 0$ m/s but $E_k = \frac{1}{2}$ mv ² so	
	$E_{k}(0) = 0 J$	1/2
4-1	From the graph we get : $T = 1 \text{ s}$	1/4
4-2	$T = T_0/2$	1/4