دورة العام 2016 الإستثنائية	امتحانات الشهادة الثانوية العامة	وزارة التربية والتعليم العالي
الخميس 4 اب 2016	الفرع: علوم الحياة	المديرية العامة للتربية
	, -	دائرة الامتحانات الرسمية
سم:	مسابقة في مادة الفيزياء الا	-
_قم':	المدةً: ساعتان الر	

This exam is formed of three exercises in three pages. The Use of non-programmable calculators is recommended.

First exercise: (7 points)

Characteristics of a coil

The aim of this exercise is to determine the characteristics of a coil. For this aim we set up the circuit represented in figure 1. This series circuit is composed of: a resistor of resistance $R = 40 \Omega$, a coil of inductance L and of internal resistance r, a capacitor of capacitance $C = 5 \mu F$ and an (LFG) of adjustable frequency f maintaining across its terminals an alternating sinusoidal voltage:

$$u(t) = u_{NM} = U_m \cos \omega t \qquad (u_{NM} \text{ in } V, t \text{ in } s).$$

We connect an oscilloscope to display the variation, as a function of time, of the voltage u_{NM} across the generator on channel (Y_1) and the voltage u_{BM} across the terminals of the resistor on channel (Y_2) .

For a certain value of f, we observe the waveforms of figure 2. The adjustments of the oscilloscope are:

- Horizontal sensitivity: 1 ms/div.
- Vertical sensitivity for both channels: 1 V/div.
- 1) Using the waveforms of figure 2, determine:
 - a) the period and the angular frequency ω of the voltage u_{NM} ;
 - **b**) the maximum value U_m of the voltage across the terminals of the generator;
 - \boldsymbol{c}) the maximum value $U_{R(m)}$ of the voltage across the terminals of the resistor and deduce the maximum value I_m of the current i in the circuit;
 - **d)** the phase difference φ between the voltage u_{NM} and the voltage u_{BM} .
- 2) Write the expression of the current i as a function of time.

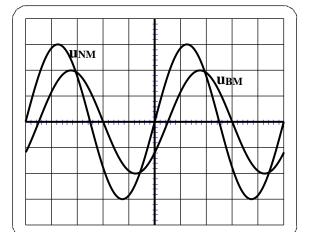
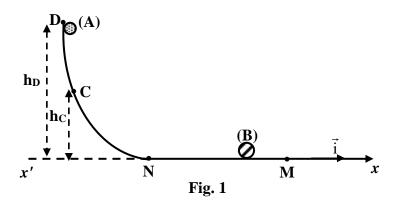


Fig. 1

Fig. 2

- 3) a) Show that the average power consumed by the circuit is $P_{average} = 0.06 \text{ W}$.
 - **b)** Deduce that $r = 8 \Omega$.
- 4) a) Show that the expression of the voltage across the terminals of the capacitor is:

$$u_{NA} = \frac{25}{\pi} \sin(\omega t - 0.2\pi)$$
 (u_{NA} in V; t in s).


- **b)** Determine the expression of the voltage u_{AB} across the terminals of the coil in terms of L and t.
- c) Applying the law of addition of voltages and by giving t a particular value, determine the value of L.

Second exercise: (7 points)

Nature of a collision

The aim of this exercise is to determine the nature of a collision between two objects. For this aim, an object (A), considered as a particle, of mass $m_A = 2$ kg, can slide without friction on a path situated in a vertical plane and formed of two parts: a circular part DN and a horizontal rectilinear part NM.

(A) is released, without initial velocity, from the point D situated at a height $h_D = 0.45 \text{ m}$ above the horizontal part NM (Fig.1).

The horizontal plane passing through MN is taken as the reference level of gravitational potential energy. Take $g = 10 \text{ m/s}^2$.

- 1) Calculate the mechanical energy of the system [(A), Earth] at the point D.
- 2) Deduce the speed V_{1A} of (A) when it reaches the point N.
- 3) (A) reaches N and moves along NM with the same velocity $\vec{V}_{1A} = V_{1A} \vec{i}$. Another object (B), considered as a particle, of mass $m_B = 4$ kg moves along the horizontal path from M toward N with the velocity $\vec{V}_{1B} = -1 \vec{i}$ (V_{1B} in m/s).
 - a) Determine the linear momentum $\overrightarrow{P_S}$ of the system [(A), (B)] before collision.
 - **b**) Deduce the velocity \vec{V}_G of the center of inertia G of the system [(A), (B)].
- 4) After collision, (A) rebounds and attains a maximum height $h_C = 0.27$ m.
 - a) Determine the mechanical energy of the system [(A), Earth] at the point C.
 - **b**) Deduce the speed V_{2A} of (A) just after collision.
- 5) Determine, by applying the principle of the conservation of the linear momentum of the system [(A), (B)], the velocity \overrightarrow{V}_{2B} of (B) just after collision.
- **6**) Specify the nature of the collision.

Third exercise: (6 points)

Determination of the volume of the blood of a person by radioactivity

In order to determine the volume of the blood of a person, we use the radionuclide sodium ²⁴₁₁Na. Given:

- Planck's constant: $h = 6.63 \times 10^{-34} \text{ J.s}$;
- Speed of light in vacuum: $c = 3 \times 10^8$ m/s;
- Avogadro's number: $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$;
- Molar mass of sodium 24: M = 24 g;
- 1 MeV = 1.6×10^{-13} J.
- Selection from the periodic table:

Element	Fluorine	Neon	Sodium	Magnesium	Aluminium
Nuclide	$^{^{19}}_{^{9}}{ m F}$	$_{10}^{20}{ m Ne}$	²³ Na	$_{12}^{24}{ m Mg}$	²⁷ ₁₃ Al

A – Sodium $^{24}_{11}$ Na is obtained by bombarding the sodium $^{23}_{11}$ Na by a neutron.

- 1) Write the equation of this nuclear reaction.
- 2) This reaction is provoked. Justify.

B – The sodium 24 is radioactive β emitter.

- 1) Write the equation of this disintegration.
- 2) Name the obtained daughter nucleus.
- 3) The disintegration of sodium 24 is accompanied by the emission of a dangerous radiation γ .
 - a) Indicate the nature of this radiation.
 - **b)** Indicate the cause of the emission of this radiation.
 - **c**) One of the emitted photons has energy of 3 MeV. Calculate the wavelength of the corresponding radiation.

C – The radioactive constant of sodium 24 is $\lambda = 1.28 \times 10^{-5} \, s^{-1}$.

- 1) At the instant $t_0 = 0$, we inject a solution containing $m_0 = 2.4 \times 10^{-4}$ g of sodium 24 into the blood of a person. Calculate the number of nuclei N_0 of sodium 24 in the injected solution.
- 2) Calculate, at the instant t = 6 hours, the number of sodium 24 nuclei remaining in the blood of the person.
- 3) Suppose that the sodium 24 is uniformly distributed in the blood of the person. At the instant t = 6 hours, 10 mL of blood taken from the person contains 9.03×10^{15} nuclei of sodium 24. Calculate the volume of the blood of the person.

دورة العام 2016 الإستثنائية الخميس 4 اب 2016	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ساعتان	مشروع معيار التصحيح

First exercise (7 points)

Part of the Q	Answer	Note
1.a	T = 5 div×1 ms/div = 5 ms = 5×10 ⁻³ s $\omega = \frac{2\pi}{T} = 400\pi \text{rad/s} = 1256 \text{rad/s}.$	1
1.b	$U_m = 3 \text{ div.} \times 1 \text{ V/div} = 3 \text{ V}$	0.5
1.c	$\begin{split} U_{Rm} &= 2 \text{ div. } \times 1 \text{ V/div} = 2 \text{ V} ; \\ U_{Rm} &= R \text{ I}_m \implies I_m = \frac{2}{40} = 0.05 \text{ A} \end{split}$	0.5 0.5
1.d	$\varphi = \frac{2\pi \times 0.5}{5} = 0.2\pi \text{ rad.}$ u _R lags u _g by 0.2 π	0.5
2	$i = 0.05 \cos (400 \pi t - 0.2\pi)$	0.5
3.a	$P = UI\cos \varphi = \frac{3 \times 0.05}{\sqrt{2} \times \sqrt{2}}\cos 0.2\pi = 0.06 \text{ W}$	0.75
3.b	$P = (R+r) I^2 \implies (R+r) = \frac{P}{I^2} = \frac{0.06}{\frac{(0.05)^2}{2}} = 48 \Omega \implies r = 8\Omega$	0.5
4.a	$i = C \frac{du_C}{dt} \Rightarrow u_C = \frac{1}{C} \int idt = \frac{0.05}{400\pi C} \sin(400\pi t - 0.2\pi) = \frac{25}{\pi} \sin(400\pi t - 0.2\pi)$	0.75
4.b	$u_{coil} = ri + L\frac{di}{dt} = 0.4 \cos(400 \pi t - 0.2\pi) - 20 \pi L \sin(400 \pi t - 0.2\pi) ;$	0.75
4.c	$\begin{split} u_{NM} &= u_{NA} + u_{AB} + u_{BM} \text{with} u_{R} = \text{Ri} = 2\cos(400\pi\text{t} - 0.2\pi) \; ; \\ 3\cos(400\pi\text{t}) &= \frac{25}{\pi}\sin(400\pi\text{t} - 0.2\pi) \; + 0.4\cos(400\pi\text{t} - 0.2\pi) \; - \\ 20\pi\text{L}\sin(400\pi\text{t} - 0.2\pi) \; + 2\cos(400\pi\text{t} - 0.2\pi) \end{split}$ For $t = 0$: $3 = 1.94 - 4.68 + 36.91 \; \text{L} \implies \text{L} = 0.155 \; \text{H}$	0.75

Second exercise (7 points)

Part of Q	Answer	Note
1	$ME_{(D)} = KE_{(D)} + PE_{g(D)} = 0 + m_A g h_D = 9J$	0.5
2	No friction \Rightarrow mechanical energy of the system [(A), Earth] is conserved : $ME_{(D)} = ME_{(N)}$; $0 + m_A g h_D = \frac{1}{2} m_A V_{1A}^2 \Rightarrow V_{1A}^2 = 2g h_D \Rightarrow V_{1A} = 3 \text{ m/s}.$	1
3- a	Linear momentum of the system [(A), (B)] before collision: $\vec{P}_S = m_A \vec{V}_{IA} + m_B \vec{V}_{IB} = (2 \times 3 \vec{i}) + [4 \times (-1 \vec{i})] = 2 \vec{i} \text{ (kg m/s)}$	0.75
3.b	$\vec{P}_S = \vec{P}_G = (m_A + m_B) \vec{V}_G \Rightarrow 2 \vec{i} = 6. \vec{V}_G \Rightarrow \vec{V}_G = 1/3 \vec{i} = 0.33 \vec{i} (m/s)$	0.75
4.a	$ME_{(C)} = KE_{(C)} + PE_{g(C)} = 0 + m_A gh_C = 2 \times 10 \times 0.27 = 5.4 J.$	0.75
4.b	Conservation of the mechanical energy of the system [(A), Earth] $0 + m_A gh_C = \frac{1}{2} m_A V_{2A}^2 \implies V_{2A}^2 = 2gh_C \implies V_{2A} = \sqrt{5.4} = 2.323 \text{ m/s}.$	0.75
5	Conservation of the linear momentum of the system [(A), (B)]: $m_{A} \vec{V}_{2A} + m_{B} \vec{V}_{2B} = 2 \vec{i} \text{ (m/s)}$ $2 \times (-2.33 \vec{i}) + 4 \vec{V}_{2B} = 2 \vec{i} \Rightarrow (-2.33 \vec{i}) + 2 \vec{V}_{2B} = \vec{i}$ $\Rightarrow 2 \vec{V}_{2B} = \vec{i} + 2.323 \vec{i} = 3.323 \vec{i} \Rightarrow \vec{V}_{2B} = 1.66 \vec{i} \text{ (m/s)}$	1.25
6	The kinetic enegy of the system [(A), (B)] $KE_{before} = \frac{1}{2} m_A V_{1A}^2 + \frac{1}{2} m_B V_{1B}^2 = 11 \text{ J}$ $KE_{after} = \frac{1}{2} m_A V_{2A}^2 + \frac{1}{2} m_B V_{2B}^2 = 5.4 + \frac{1}{2} \times 4 \times (1.66)^2 = 5.4 + 5.58 = 10.91 \text{ J} \approx 11 \text{ J}$ $\Rightarrow \text{the collision is elastic}$	1.25

Third exercise (6 points)

Part of the Q	Answer	Note
A.1	${}^{23}_{11}\text{Na} + {}^{1}_{0}\text{n} \rightarrow {}^{24}_{11}\text{Na}$	0.5
A.2	Provoked since it needs an external intervention.	0.5
B.1		0.75
B.2	The daughter nucleus is magnesium: ²⁴ / ₁₂ Mg	0.5
B.3.a	It is an electromagnetic wave.	0.5
B.3.b	Due to the des-excitation of the daughter nucleus	0.5
B.3.c	The energy of the photon is: $E = h\frac{c}{\lambda} \Rightarrow \lambda = h\frac{c}{E}$ $\lambda = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{3 \times 1.6 \times 10^{-13}} = 4.14 \times 10^{-13} \text{ m}$	0.75
C.1	$N_0 = \frac{m_0 N_A}{M} = 6.02 \times 10^{18} \text{ nuclei.}$	0.75
C.2	The number of nuclei remaining in the blood of the person is: $N = N_0 \ e^{-\lambda t} = 6.02 \times 10^{18} \times \ e^{-1.28 \times 10^{-5} \times 6 \times 3600} = 4.56 \times 10^{18} \ \text{nuclei}.$ $\underline{\textbf{Another method}}:$ $t = n. \ T \ ; T = \ln 2/\lambda \Rightarrow n = 6/15$ $N = N_0/2^n = 4.56 \times 10^{18} \ \text{nuclei}$	0.75
C.3	The volume of blood of the person is :V = $\frac{4.56 \times 10^{18} \times 10^{-2}}{9.03 \times 10^{15}} = 5.05 \text{ L}.$	0.5