امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة

الاسم: الرقم: مسابقة في مادة الفيزياء المدة ساعتان

<u>This exam is formed of three exercises in three pages.</u> The use of non-programmable calculators is recommended.

<u>First exercise</u>: (7 points)

Harmonic oscillator

The aim of this exercise is to study the motion of a mechanical oscillator.

A – Theoretical study

For this aim, consider a small trolley (C) of mass m = 200 g, attached to one extremity of a horizontal spring (R); of

negligible mass, and of un-jointed loops of stiffness

k = 20 N/m; the other extremity of the spring is attached to a fixed support (A) (figure 1).

The trolley (C) may slide without friction on a horizontal rail

and its center of inertia G can move along the horizontal axis x'Ox.

At the instant $t_0 = 0$, (G) is initially in its equilibrium position O, at this instant (C) is launched, at the instant $t_0 = 0$, with an initial velocity $\vec{V_o} = -V_0 \vec{i}$ ($V_0 > 0$). (C) then oscillates without friction with a proper angular frequency ω_0 .

At an instant t, the abscissa of G is $x = \overline{OG}$ and the algebraic measure of its velocity is $v = \frac{dx}{dt}$.

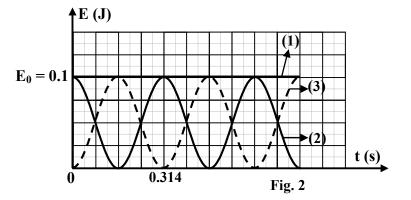
The horizontal plane passing through G is taken as a reference level of gravitational potential energy.

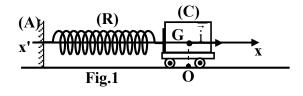
- 1) Write, at an instant t, the expression of the mechanical energy of the system [(C), (R), Earth] in terms of m, k, x and v.
- 2) Derive the second order differential equation in x that describes the motion of G.
- 3) The solution of this differential equation is of the form $x = -X_m \sin(\omega_0 t)$, where X_m is a positive constant.
 - a) Determine the expression of ω_0 in terms of k and m.
 - **b)** Deduce the value of the proper period T_0 .
- 4) Determine the expression of the amplitude X_m in terms of V_0 , k and m.

B – Energetic study

An appropriate device allows to obtain the variations with respect to time of the kinetic energy, elastic potential energy and the mechanical energy of the system [(C), (R), Earth] (figure 2).

- 1) Indicate, with justification, the type of energy corresponding to each curve.
- The energies represented by the curves (2) and (3) are periodic of period T.
 - a) Pick up from figure 2 the value of T.
 - **b)** Deduce the relation between T and T_0 .
- 3) Write the expression of E_0 in terms of m and V_0 .
- 4) Deduce the value of V_0 .





Determination of the characteristics of an electric component

An electric component (D), of unknown nature, which may be a resistor of resistance R or a pure coil of inductance L or a capacitor of capacitance C.

To determine the nature and the characteristic of (D) we consider the following:

- An ideal generator G of constant electromotive force (e.m.f) E;
- Two resistors of resistances $R_1 = 100 \Omega$ and $R_2 = 150 \Omega$;
- A double switch K.

We set up the circuit of figure 1.

A – First Experiment

At an instant $t_0 = 0$, the switch K is turned to position (1). Figure 2 shows the variation of the voltage u_{FM} across the terminals of (D) as a function of time and the tangent to this curve at $t_0 = 0$.

- 1) The component (D) is a capacitor. Justify.
- 2) Indicate the value of the e.m.f E of the generator.
- 3) Calculate, at $t_0 = 0$, the current carried by the circuit.
- 4) Derive the differential equation describing the variation of the voltage $u_{FM} = u_C$.
- 5) The solution of the differential equation has the form:

 $u_{C} = u_{FM} = A + B e^{-\frac{1}{\tau}}$.

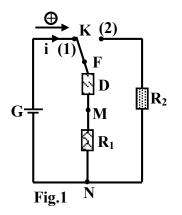
Determine the expressions of the constants A, B and τ in terms of R₁, C and E.

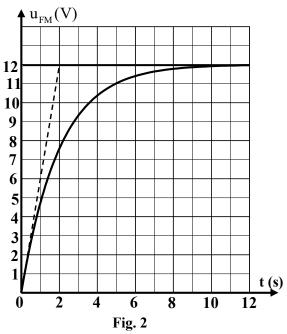
- 6) Determine, graphically, the value of the time constant τ .
- 7) Deduce the value of C.

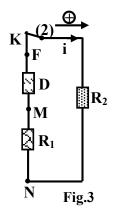
B – Second Experiment.

During the charging of the capacitor and at an instant t_1 , we turn the switch K to the position (2) (figure 3).

- 1) Name the phenomenon that takes place.
- 2) The resistor R_2 can support a maximum power of $P_{max} = 0.24$ W.
 - a) Calculate the maximum value of the current which can pass through R_2 without damaging it (the thermal power is given by the relation: $p = R i^2$).
 - **b)** Applying the law of addition of voltages, show that the maximum voltage across the terminals of the capacitor is $u_{FM} = 10$ V so that R_2 will not be damaged.
 - c) At the instant t_1 the current is maximum. Determine, graphically, the maximum duration $\Delta t = t_1$ of the charging process of the capacitor so that the resistor R_2 will not be damaged.







Third exercise: (6 points)

The radioactivity of cobalt-60

The cobalt isotope ${}^{60}_{27}$ Co is radioactive of a radioactive constant $\lambda = 4.146 \times 10^{-9} \text{ s}^{-1}$. Consider a sample of this isotope of mass $m_0 = 1$ g at the instant $t_0 = 0$. **Given:**

Symbol	$^{60}_{27}$ Co	⁶⁰ ₂₈ Ni	$^{\mathrm{A}}_{\mathrm{Z}}\mathrm{X}$
Mass (in u)	59.9190	59.9154	0.00055

- $1u = 931.5 \text{ MeV/c}^2$;
- Avogadro's number: $6.02 \times 10^{23} \text{ mol}^{-1}$;
- Molar mass of cobalt: 60 g.mol⁻¹;
- 1 year = 365 days.
- 1) Calculate, in years, the period of the cobalt- 60 nucleus.
- 2) a) Determine, at $t_0 = 0$, the number of nuclei N_0 presented in 1 g of cobalt- 60.
 - **b)** Define the activity A of a radioactive sample.
 - c) Determine the activity of the cobalt sample at the instant t = 15.9 years.
- 3) The disintegrations of ${}^{60}_{27}$ Co gives rise to a nickel isotope ${}^{60}_{28}$ Ni according to the following reaction:

 $^{60}_{27}$ Co $\rightarrow ^{60}_{28}$ Ni + $^{A}_{Z}$ X +.....

- a) Calculate, specifying the laws used, A and Z.
- **b)** Name the emitted particles.
- c) Calculate, in MeV, the energy liberated by this disintegration.
- d) Determine the energy liberated by the disintegration of 1g of cobalt- 60.
- 4) Knowing that the energy liberated by the fission of 1 g of $^{235}_{92}$ U is 5.127×10²³ Mev, calculate the

mass of $\frac{^{235}}{_{92}}$ U whose fission provides an energy equivalent to that liberated by the disintegration of 1 g of cobalt-60.

	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية
	مسابقة في مادة الفيزياء	دائرة الامتحانات مشروع معيار التصحيح
الاسم: الرقم:	المدة ساعتان	

First e	xercise : Harmonic oscillator	7
A.1	Mecahnical energy : ME = PE _{el} + KE \Rightarrow ME = $\frac{1}{2}$ k · x ² + $\frac{1}{2}$ m · v ²	1/2
A.2	No friction \Rightarrow mechanical energy is conserved \Rightarrow ME = constant. Derive both sides with respect to time $\Rightarrow \frac{dME}{dt} = k x x' + m vv' = 0 \Rightarrow x'' + \frac{k}{m} x = 0.$	3/4
A.3.a	$\begin{aligned} \mathbf{x} &= - \mathbf{X}_{\mathrm{m}} \sin(\omega_0 t) \text{ ; } \mathbf{x}' = - \mathbf{X}_{\mathrm{m}} \omega_0 \cos(\omega_0 t) \text{ and } \mathbf{x}'' = \mathbf{X}_{\mathrm{m}} \omega_0^2 \sin(\omega_0 t) \\ \text{Replace in the differential equation:} \\ \mathbf{X}_{\mathrm{m}} \omega_0^2 \sin(\omega_0 t) - \frac{\mathbf{k}}{\mathrm{m}} \mathbf{X}_{\mathrm{m}} \sin(\omega_0 t) = 0 \Rightarrow \mathbf{X}\mathrm{m} \sin(\omega_0 t) (\omega_0^2 - \frac{\mathbf{k}}{\mathrm{m}}) = 0 \Rightarrow \omega_0 = \sqrt{\frac{\mathbf{k}}{\mathrm{m}}} . \end{aligned}$	1
A.3.b	$T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{K}} = 0.2\pi = 0.628s$	3/4
A.4	$\begin{aligned} \mathbf{x}' &= -X_{\mathrm{m}} \omega_0 \cos(\omega_0 t) \text{ ; at } t_0 = 0 \text{ : } \mathbf{x} = 0 \text{ and } \mathbf{v} = -X_{\mathrm{m}} \omega_0 = -V_0 \\ \Rightarrow X_{\mathrm{m}} &= \frac{V_0}{\omega_0} = V_0 \sqrt{\frac{\mathrm{m}}{\mathrm{k}}} \text{ .} \end{aligned}$ $\underbrace{\mathbf{OR}} \text{ : Mecahnical energy is conserved} \Rightarrow \frac{1}{2} k X_{\mathrm{m}}^2 = \frac{1}{2} \mathrm{m} V_0^2 \Rightarrow X_{\mathrm{m}} = V_0 \sqrt{\frac{\mathrm{m}}{\mathrm{k}}} \end{aligned}$	3/4
B.1	Curve (1): Mechanical energy, because $ME = E_0 = \text{constant}$; Curve (2) : Kinetic energy because at $t = 0$: $v = -V_0$ and $KE = \frac{1}{2}mV_0^2 \Rightarrow E = E_0 = KE_{\text{max}}$ Curve (3): elastic potential energy because at $t = 0$, $x = 0 \Rightarrow PE_{el} = 0$	1 1/2
B.2.a	T = 0.314s	1/4
B.2.b	$T_0 = 2T$	1/2
B.3	$E_0 = KE_0 + PE_{el} = \frac{1}{2}mV_0^2 + 0 = \frac{1}{2}mV_0^2$	1/2
B.4	$0.1 = \frac{1}{2} \times 0.2 \times V_0^2 \implies V_0 = 1 \text{ m/s}$	1/2

Secon	Second exercise : Identification and determination the characteristic of an electric component	
A.1	D is a capacitor since its voltage increases exponentially from zero to a constant limiting value.	1/2
A.2	At the end of charging, the voltage across C is E thus: $E = 12V$	1/2
A.3	At t = 0 s, the current is maximum, i = I ₀ \Rightarrow E = u _c +R ₁ i ; u _C = 0 \Rightarrow i= I ₀ = $\frac{E}{R_1} = \frac{12}{100} = 0.12$ A.	1
A.4	$u_{FN} = u_{FM} + u_{MN} : E = u_{FM} + R_1. i But i = \frac{dq}{dt} = C \frac{du_{LM}}{dt}$ $\Rightarrow E = u_C + R_1 C \frac{du_C}{dt} \Rightarrow \frac{du_C}{dt} + \frac{1}{R_1 C} u_C = \frac{E}{R_1 C}$ $u_C = A + B e^{-\frac{t}{\tau}}. \text{ at } t = 0 \Rightarrow 0 = A + B \Rightarrow A = -B$	1 ½
A.5	$u_{C} = A + B e^{-\frac{t}{\tau}} \text{ at } t = 0 \Rightarrow 0 = A + B \Rightarrow A = -B$ $\frac{du_{C}}{dt} = -\frac{B}{\tau}e^{-t/\tau} \Rightarrow -\frac{B}{\tau}e^{-t/\tau} + \frac{A}{R_{1}C} + \frac{B}{R_{1}C}e^{-t/\tau} = \frac{E}{R_{1}C}$ By identification A = E and $\tau = R_{1}C$; B = -A = -E	1⁄2
A.6	Using the graph, we get : $\tau = 2$ s ; the tangent at t=0, cuts the E-axis at t = 2ms	1/2
A.7	$\tau = R_1 C \implies C = \frac{2}{100} = 0.02F = 20 \text{ mF.}$	1/2
B.1	Discharging of the capacitor	1⁄4
B.2.a	$P_{max} = 0.24 \text{ W} = R_2 [I_{max}]^2 \Rightarrow I_{max} = 0.04 \text{ A}$	1/2
B.2.b	$u_{FM} = u_{FN} + u_{NM} \Longrightarrow u_{FM} = R_2 i + R_1 i = (R_2 + R_1) i \Longrightarrow (u_{FM})_{max} = (R_2 + R_1) I_{max} = 10 V$	1/2
B.2.c	From the graph $u_C = 10V \Rightarrow t_1 = 0.35s$.	1⁄4

Thire	Third exercise : The radioactivity of cobalt-60	
1	$\lambda = \frac{\ell n}{T} \Rightarrow T = \frac{0.693}{4.146 \times 10^{-9} \times 365 \times 24 \times 3600} = 5.3 \text{ years}$	3/4
2.a	$N_0 = \frac{m_0}{M} \times 6.02 \times 10^{23} = 1.00333 \times 10^{22} \text{ nuclei} \approx 1 \times 10^{22} \text{ nuclei}$	3/4
2.b	The radioactive activity is the number of disintegrations per unit time.	1/2
2.c	A = λ N with N = N ₀ e ^{-λt} ; t = 3 T \Rightarrow N = 1.25 × 10 ²¹ nuclei A = λ N = 5.2 × 10 ¹² Bq	1
3.a		3/4
3.b	The emitted particles: electron and antineutrino	1/2
3.c	$\Delta m = m_{before} - m_{after} = (59.9190) - (59.9154 + 0.00055) = 3.05 \times 10^{-3} u$ $E_{\ell} = \Delta mc^{2} = 3.05 \times 10^{-3} \times 931.5 = 2.84 \text{ MeV}$	3/4
3.d	Energy liberated by 1 g de Co: E' = $N_0E_\ell = 2.84 \times 10^{22}$ MeV	1/2
4	$m_{\rm U} = \frac{2.84 \times 10^{22}}{5.127 \times 10^{23}} = 0.055g$	1⁄2