الدورة الإستثنائية للعام 2012	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ساعتان	

<u>This exam is formed of three exercises in three pages numbered from 1 to 3.</u> <u>The use of a non-programmable calculator is recommended.</u>

<u>First exercise</u>: (7 points)

Study of the motion of a skier

A skier (S), of mass m = 80 kg, is pulled by a boat using a rope parallel to the surface of water. He starts from point A at the instant $t_0 = 0$ without initial velocity.

The skier passes point B at the instant t = 60 s with a speed $V_B = 6$ m/s, then he releases the rope. He continues his motion along a board BD inclined by an angle of 30° with respect to the horizontal surface of water. Suppose that during the passage from AB to BD the speed at point B does not change.

The skier arrives point D, situated at an altitude h = 1.6 m from the water surface, with a velocity \vec{V}_D , then he leaves the board at point D to hit the water surface at point E (see figure below).

Given:

- the skier is considered as a particle;
- on the path AB, the force of traction \vec{F} exerted by the rope on the skier has a constant magnitude F and the whole forces of friction are equivalent to a single force \vec{f} opposite to the displacement, of magnitude f = 100 N;
- friction is negligible along the path BDE;
- * after leaving point D the motion of the skier takes place in the vertical plane Dxy containing \vec{V}_{D} ;
- the horizontal plane passing through AB is the reference level of the gravitational potential energy;
- $g = 10 \text{ m/s}^2$.

A – Motion of the skier between A and B

- 1) What are the external forces acting on (S) along the path AB? Draw, not to scale, a diagram of these forces.
- 2) Applying Newton's second law $\frac{d\vec{P}}{dt} = \Sigma \vec{F}_{ext}$ on the skier, between the points A and B, express the acceleration a of the motion of the skier in terms of F, f and m.
- 3) Determine the expression of the speed V of the skier in terms of F, f, m and the time t.
- 4) Deduce F.

B – Motion of the skier on the board **BD**

- 1) Why can we apply the principle of conservation of the mechanical of energy of system [(S), Earth] on the path BD?
- 2) Deduce that $V_D = 2$ m/s.

\mathbf{C} – Motion of the skier between \mathbf{D} and \mathbf{E}

The skier leaves the board at point D, at an instant t_0 , taken as a new origin of time.

- 1) Apply Newton's second law on the skier to show that, at an instant t, the vertical component P_y of the linear momentum of the skier is of the form: $P_y = 800 \text{ t} 80$ (In SI unit).
- 2) Deduce the parametric equation y(t) of the motion of the skier in the frame of reference Dxy.
- 3) Determine the duration taken by the skier to pass from D to E.

Second exercise: (7 points)

Electromagnetic induction and self-induction

$\mathbf{A} - \mathbf{Electromagnetic}$ induction

A coil, of horizontal axis, is made up of N = 500 circular turns each of surface area S = 10 cm². The normal \vec{n} to the planes of the turns of the coil is directed as indicated in figure 1.

The coil rotates at a constant angular velocity ω about a vertical axis (Δ) in a

horizontal, constant and uniform magnetic field \vec{B} . The terminals A and C of the coil are connected to the input Y and the ground M of an oscilloscope

respectively. Let θ be the angle between \vec{n} and \vec{B} at an instant t.

- 1) Knowing that $\theta = 0$ at the instant $t_0 = 0$, show that $\theta = \omega t$.
- Deduce that the expression of the magnetic flux crossing the coil is given by: φ = NBScos(ωt).
- **3)** Justify, qualitatively, the existence of an induced e.m.f "e" during the rotation of the coil.
- 4) a) Determine, in terms of N, S, B, ω and t, the expression of the induced e.m.f "e".
 - **b**) The coil does not carry a current. Why?
 - c) Deduce the expression of the voltage u_{AC} in terms of N, S, B, ω and t, supposing that the coil is oriented positively from A to C.
- 5) The waveform of figure 2 represents the variation of the voltage u_{AC} as a function of time. Using this waveform, determine:
 - **a**) the angular velocity ω of the coil;
 - **b**) the maximum value of the voltage u_{AC} ;
 - c) the value B of the magnetic field \vec{B} .

B-Self-induction

The coil is of negligible resistance and of inductance L. It is connected in series with a resistor of resistance $R = 1 k\Omega$ and a generator G (fig. 3). The circuit of figure 3 thus carries a triangular current i. The positive orientation of the circuit is as that of the current.

$$\begin{split} \mathbf{S}_{h} &= 10 \text{ ms/div} \quad \textbf{Fig.2} \\ \mathbf{S}_{V} &= 1 V/div \end{split}$$

With the aid of the oscilloscope, we visualize the variations of the voltages $u_1 = u_{BC}$ across the resistor and $u_2 = u_{AC}$ across the coil (fig. 4).

- 1) Show that $u_2 = -\frac{L}{R}\frac{du_1}{dt}$.
- 2) The shape of the waveform obtained on Y_2 is square. Justify this shape.
- **3**) Determine the value of L.

Third exercise: (6 points)

Sodium vapor lamp

A sodium vapor lamp emits mainly a yellow light called doublet of wavelengths 589.0 nm and 589.6 nm. Other wavelengths are also emitted, as those: $\lambda_1 = 330.3$ nm, $\lambda_2 = 568.8$ nm, $\lambda_3 = 615.4$ nm, $\lambda_4 = 819.5$ nm and $\lambda_5 = 1138.2$ nm.

Figure 1 below shows only the yellow doublet of the emission spectrum of the sodium atom.

Fig. 1

Given : $h = 6.62 \times 10^{-34} \text{ J} \cdot \text{s}$; $c = 3 \times 10^8 \text{ m/s}$; $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$.

A – Spectrum analysis

- 1) To what range: visible, infrared or ultraviolet, does each of the radiations of the wavelengths λ_1 , λ_2 , λ_3 , λ_4 and λ_5 belong?
- 2) Is the sodium vapor lamp a monochromatic or a polychromatic source of light? Justify your answer.
- **3)** Consider the yellow radiation of wavelength 589.0 nm. Show that the value of the energy of a photon corresponding to this radiation is approximately 2.11 eV.

B – Energetic analysis of the diagram

Figure 2 shows a simplified diagram of the energy levels of a sodium atom.

- a) One of these energy levels represents the ground state. Specify which one.
 - **b**) What do we call each of the other shown levels?
- 2) a) Define the emission spectrum.
 - **b**) Use the diagram of figure 2 to justify the discontinuity of the emission spectrum.
- 3) The emission of the yellow radiation of wavelength 589.0 nm is due to the transition of the sodium atom from an excited level E_n to the ground state. Determine E_n.
- 4) In fact, the energy level E_n is double. This double is constituted of two energy levels E_n and E'_n that are very close to each other. Compare, with justification, E_n and E'_n.

- **a**) Determine the two levels E_x and E_y .
- **b**) Is the spectral line associated with the transition x→y an emission or absorption line? Justify your answer.

الدورة الإستثنائية للعام 2012	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ساعتان	مشروع معيار التصحيح

First exercise (7 points)

Part of the Q	Answer	Mark
A.1	I The forces acting on (S) are: the weight $m \vec{g}$, the normal reaction of the surface of water \vec{N} , \vec{F} and \vec{f} . $\vec{f} \leftarrow \vec{f}$ $\vec{f} \leftarrow \vec{f}$	1⁄2
A.2	$\frac{\vec{dP}}{dt} = \Sigma \vec{F}_{ext} = \vec{mg} + \vec{N} + \vec{F} + \vec{f} \text{ project along the direction of motion} \Rightarrow$ $\frac{dP}{dt} = F - f \Rightarrow ma = F - f \Rightarrow a = \frac{F - f}{m}$	1
A.3	V = primitive of a = at +V _o (V _o = 0) then V = $(\frac{F-f}{m})$ t.	3⁄4
A.4	$V = V_B = 6$ m/s for t = 60 s $\Rightarrow 6 = (\frac{F - 100}{80})60 \Rightarrow F = 108$ N	3⁄4
B.1	Since friction is negligible between B and D	1⁄4
B.2	$ \begin{array}{l} ME_{B} = ME_{D} \implies \frac{1}{2} m(V_{B})^{2} + 0 = \frac{1}{2} m(V_{D})^{2} + mgh \\ \implies \frac{1}{2} (80)(36) = \frac{1}{2} (80)(V_{D})^{2} + 80 \times 10 \times 1.6 \implies V_{D} = 2 m/s. \end{array} $	1
C.1	$\frac{\overrightarrow{dP}}{dt} = \Sigma \overrightarrow{F_{ext}} = mg \ \vec{j} \implies \frac{dP_y}{dt} = mg \implies P_y = mgt + P_{0y}$ $P_{0y} = mV_{0y} = m(-V_D \sin 30^\circ) = -80 \times 2 \times \frac{1}{2} = -80$ $\implies P_y = 800t - 80$	1
C.2	$V_y = \frac{P_y}{m} = 10t - 1 \implies y = 5t^2 - t + y_o = 5t^2 - t$ (y _o =0).	3⁄4
C.3	$1.6 = 5t^{2} - t \implies 5t^{2} - t + 1.6 = 0 \implies \Delta = 1 + 32 = 33$ $t = \frac{1 \pm \sqrt{33}}{10} \implies t = \frac{1 + \sqrt{33}}{10} = 0.67 \text{ s.}$	1

Part of Answer Mark the Q The angular velocity is constant, therefore: $\theta = \omega \cdot t + \theta_0$ with $\theta_0 = 0$ A.1 1⁄2 A.2 The magnetic flux through the coil is: 1⁄4 $\phi = N \vec{B} \cdot S \vec{n} = NBScos(\theta) = NBScos(\omega t)$ A.3 During the rotation of the coil, θ varies \Rightarrow magnetic flux varies, therefore e exists. $\frac{1}{2}$ Or ϕ is a function of time, then ϕ varies so e exists. A.4.a $e = -\frac{d\phi}{dt} = -NBS[-\omega \sin(\omega t)] \implies e = NBS \ \omega \sin(\omega t)$. $\frac{1}{2}$ A.4.b Since the circuit is not closed (the resistance of the oscilloscope is too 1⁄4 large or the circuit is open). A.4.c $u_{AC} = ri - e = -NBS \omega sin(\omega t).$ 1⁄2 A.5.a The period T = 40 ms $\Rightarrow \omega = \frac{2\pi}{T} = 157$ rd/s. 3⁄4 A.5.b $u_{AC}(max) = 3 \text{ div} \times \overline{1V} = 3 \text{ V}.$ 1⁄4 A.5.c $u_{AC}(max) = NBS \omega$ $\Rightarrow B = \frac{u_{AC}(max)}{NS\omega} = \frac{3}{500 \times 10 \times 10^{-4} \times 157} = 0.038T.$ 3⁄4 $u_2 = u_{AC} = e - ri = e = -L \frac{di}{dt}$ and $u_1 = R$ $i \Rightarrow i = \frac{u_1}{R} \Rightarrow \frac{di}{dt} = \frac{1}{R} \frac{du_1}{dt}$ **B**.1 Thus $u_2 = -\frac{L}{R}\frac{du_1}{dt}$. 1 **B**.2 In the first half period, i is a linear function of time $(i = at + b) \Rightarrow$ $u_1 = Ri = Rat + Rb u_2 = -\frac{L}{R}\frac{du_1}{dt} = -\frac{L}{R}Ra = -La = constant.$ 3⁄4 In the second half period, same explanation gives $u_1 = La$, Therefore the form of u_2 is a square. In the first half period : $\frac{du_1}{dt} = \frac{1 \times 1}{2 \times 5 \times 10^{-3}} = 100 \text{ V/s}$ **B.3** 1 and $u_2 = -10 \times 10^{-3} \text{ V} = -\frac{L}{1000} \times 100 \implies L = 0.1 \text{ H or } 100 \text{ mH}.$

Second exercise (7 points)

Third exercise (6 points)

Part of the Q	Answer	Mark
A.1	λ_1 : U.V; λ_2 and λ_3 : visible ; λ_4 and λ_5 : I.R.	3⁄4
A.2	It is polychromatic since it is formed of many wavelengths (radiations).	1⁄2
A.3	$E = hv = h\frac{c}{\lambda} = 3.37 \times 10^{-19} \text{ J} = 2.11 \text{ eV}$	1⁄2
B.1.a	The energy level -5.14 eV corresponds to a ground state, since it is the lowest energy level.	1⁄2
B.1.b	E_2 , E_3 , E_4 and E_5 are excited state. The energy level 0, corresponds to the ionization state	1⁄2
B.2.a	The emission spectrum is the set of spectral lines emitted by an atom.	1⁄4
B.2.b	To each electronic transition between two energy levels corresponds an emission line and since the energy levels diagram of the sodium atom are discontinious, then the spectral lines must be discontinuous.	1⁄2
B.3	$E_n - E_1 = 2.11 \text{ eV}$; $E_n = 2.11 + E_1 = 2.11 + (-5.14) = -3.03 \text{ eV} = E_2$.	1⁄2
B.4	$E_{n} - (-5.14) = \frac{hc}{\lambda}$ $E'_{n} - (-5.14) = \frac{hc}{\lambda'}$ $\lambda' > \lambda \Longrightarrow E'_{n} < E_{n}$ $\underline{Or} : \text{the variation of the energy } \Delta E \text{ is inversely proportional to the wavelength of the emitted radiation ; } \lambda' > \lambda \text{ and } \Delta E' < \Delta E \Longrightarrow E'_{n} < E_{n}$	1
B.5.a	$E_y - E_x = 1.51 \text{ eV corresponds to } E_4 - E_2 = 1.51 \text{ eV}.$ Thus $E_x \rightarrow E_2$ and $E_y \rightarrow E_4$	1/2
B.5.b	The associated spectral line is an absorption line because the atom passes from one level to a higher energy level, so it absorbs energy.	1/2