1

This exam is formed of three exercises in three pages. The use of a non-programmable calculator is allowed

امتحانات الشهادة الثانوية العامة

الفرع: علوم الحياة

<u>First Exercise</u> (6¹/₂ points) <u>Determination of the inductance of a coil</u>

In order to determine the inductance L of a coil of negligible resistance, we connect this coil in series with a resistor of resistance $R = 10 \Omega$ across the terminals of a generator G (Fig. 1). The generator G delivers an alternating sinusoidal voltage $u_{AD} = u_G = U_m \cos\omega t$ ($u_G \text{ in } V$, t in s). The circuit thus carries a current i.

الاسم:

الرقم:

- 1) Redraw a diagram of figure (1), showing on it the connections of an oscilloscope so as to display the voltage u_G across the terminals of the generator and the voltage $u_R = u_{BD}$ across the terminals of the resistor.
- 2) Which of these two voltages represents the image of i ? Justify your answer
- 3) In figure 2, the waveform (1) represents the variation of u_G as a function of time. - Horizontal sensitivity: 5 ms/div.
 - Vertical sensitivity on both channels: 1 V/div.
 - a) Specify, with justification, which of the waveforms, (1) or (2), leads the other.
 - *b*) Determine:
 - *i.* The phase difference between these two waveforms. *ii.* The angular frequency of
 - *ii.* The angular frequency ω .
 - *iii.* The maximum value U_m of the voltage across G. *iv.* The amplitude I_m of i.
 - *c*) Write down the expression of i as a function of time t.
- 4) Determine the voltage $u_{AB} = u_L$ across the terminals of the coil as a function of L and t.
- 5) Determine the value of L by applying the law of addition of voltages and by giving t a particular value.

Second Exercise (7 points)

Acceleration of a particle

The object of this exercise is to determine the expression of the magnitude of the acceleration of a particle using two methods. The apparatus used is formed of two particles (S_1) and (S_2) of respective masses m_1 and m_2 , fixed at the extremities of an inextensible string passing over the groove of a pulley. (S_1) , (S_2) , the string and the pulley form a mechanical system (S).

The string and the pulley have negligible mass.

 (S_1) may move on the line of greatest slope AB of an inclined plane that makes an angle α with the horizontal AC and (S_2) hangs vertically. At rest, (S_1) is found at point O at a height h₁ above AC and (S_2) is found at

O' at a height h_2 (adjacent figure).

At the instant $t_0 = 0$, we release the system (S) from rest. (S₁) ascends on AB and (S₂) descends vertically. At an instant t, the position of (S₁) is defined by its abscissa $x = \overline{OS_1}$ on an axis x'Ox confounded with

AB, directed from A to B.

Take the horizontal plane containing AC as a gravitational potential energy reference.

Neglect all the forces of friction.

1) Energetic method

- *a*) Write down, at the instant $t_0 = 0$, the expression of the mechanical energy of the system [(S), Earth] in terms of m_1 , m_2 , h_1 , h_2 and g.
- b) At the instant t, the abscissa of (S₁) is x and the algebraic value of its velocity is v.
 Determine, at that instant t, the expression of the mechanical energy of the system [(S), Earth] in terms of m₁, m₂, h₁, h₂, x, v, α and g.
- c) Applying the principle of conservation of mechanical energy, show that :

$$v^2 = \frac{2(m_2 - m_1 \sin \alpha)gx}{(m_1 + m_2)}.$$

d) Deduce the expression of the value a of the acceleration of (S_1) .

2) Dynamical method

- a) Redraw a diagram of the figure and show, on it, the external forces acting on (S_1) and on (S_2) . (The tension in the string acting on (S_1) is denoted by \vec{T}_1 of magnitude T_1 and that acting on (S_2) is denoted by \vec{T}_2 of magnitude T_2).
- **b**) Applying the theorem of the center of mass $\Sigma \vec{F}_{ext} = m\vec{a}$, on each particle, determine the expressions of T_1 and T_2 in terms of m_1 , m_2 , g, α and a.
- *c*) Knowing that $T_1 = T_2$, deduce the expression of a.

Third Exercise (6 ¹/₂ points)

Provoked Nuclear Reactions

The object of this exercise is to compare the energy liberated per nucleon in a nuclear fission with that liberated in a nuclear fusion.

			(siven:			
Symbol	${}^{1}_{0}n$	${}^{2}_{1}H$	${}_{1}^{3}$ H	⁴ ₂ He	$^{235}_{92}{ m U}$	$^{94}_{Z}$ Sr	^A ₅₄ Xe
Mass in u	1.00866	2.01355	3.01550	4.0015	234.9942	93.8945	138.8892

 $1u = 931.5 \text{ MeV/c}^2$

A – Nuclear fission

The fission of uranium 235 is used to produce energy.

1) The fission of one uranium 235 nucleus takes place by bombarding this nucleus by a slow (thermal) neutron of kinetic energy around 0.025 eV. The equation of this reaction is written as :

$${}^{235}_{92}\text{U} + {}^{1}_{0}\text{n} \rightarrow {}^{94}_{Z}\text{Sr} + {}^{A}_{54}\text{Xe} + 3{}^{1}_{0}\text{n}$$

- a) Calculate A and Z specifying the laws used.
- *b*) Show that the energy E liberated by the fission of one uranium nucleus is 179.947 MeV.
- *c*) *i*) The number of nucleons participating in this reaction is 236. Why?

ii) Calculate then E₁, the energy liberated per nucleon participating in this fission reaction.

2) Each of the obtained neutrons has an average kinetic energy $E_0 = \frac{E}{100}$.

a) In this case, the obtained neutrons do not, in general, provoke fission. Why?

b) What then should be done in order to obtain a fission reaction?

B – Nuclear fusion

Nowadays, many researches are performed in order to produce energy by nuclear fusion. The most accessible is the reaction between a deuterium nucleus ${}_{1}^{2}H$ and a tritium nucleus ${}_{1}^{3}H$.

- *1*) The deuterium and the tritium are two isotopes of hydrogen. Write down the symbol of the third isotope of hydrogen.
- 2) Write down the fusion reaction of a deuterium nucleus with a tritium nucleus knowing that this reaction liberates a neutron and a nucleus ${}_{Z}^{A}X$. Calculate Z and A and give the name of the nucleus ${}_{Z}^{A}X$.
- 3) Show that the energy liberated by this reaction is E' = 17.596 MeV.
- 4) Calculate E'_1 the energy liberated per nucleon participating in this reaction.

C-Conclusion

Compare E_1 and E'_1 and conclude.

الدورة الإستثنائية للعام 2011		امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية
			دائرة الامتحانات
	الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ساعتان	مشروع معيار التصحيح

First exercise (6 ¹/₂ points)

Part of the Q.	Answer	Mark
1	A $Ch A$ G R $Ch B$ D	1/2
2	$u_R = Ri$, u_R is proportional to i.	1/2
3-а	u_1 becomes zero before u_2 , thus $u_1 = u_G$ leads i ($u_2 = u_R$ represents i).	1/2
3-b-i	T \leftrightarrow 5 div \leftrightarrow 2 π rad 0.63 div $\leftrightarrow \phi \Rightarrow \phi = 2\pi \times \frac{0.63}{5} = 0.79$ rd	3⁄4
3-b-ii	$T = 5 \text{ (div)} \times 5 \text{ ms/div} = 25 \text{ ms}$ $\omega = \frac{2\pi}{T} = 251.3 \text{ rad/s}$	1/2
3-b-iii	$Um = 4 (div) \times 1 V/div = 4 V$	1/2
3-b-iv	$\begin{split} U_{Rm} &= 2.8 \times 1 = 2.8 \text{ V} \\ \Rightarrow I_m &= \frac{U_{Rm}}{R} = \frac{2.8}{10} = 0.28 \text{ A} \end{split}$	3⁄4
3-с	$i \text{ lags } u_{G} \text{ by } 0.79 \text{ rad;} i = I_{m} \cos(\omega t - 0.79) i = 0.28 \cos(80\pi t - 0.79)$	1/2
4	$u_{\rm L} = L \frac{di}{dt} = -70.37 \text{L} \sin (80\pi t - 0.79)$	1
5	$u_{G} = u_{R} + u_{L} = Ri + u_{L}$ $4 \cos (80\pi t) = 2.8 \cos (80\pi t - 0.79) - 70.37L \sin (80\pi t - 0.79)$ For t = 0; L = 0.04 H = 40 mH.	1

Part of the Q	Answer	Mark
1.a	$M.E = K.E_1 + P.E_{g1} + K.E_2 + P.E_{g2} = 0 + m_1gh_1 + 0 + m_2gh_2$	1/2
1.b	$\begin{split} \mathbf{M}.\mathbf{E} &= \mathbf{K}\mathbf{E}_1 + \mathbf{P}.\mathbf{E}_{g1} + \mathbf{K}.\mathbf{E}_2 + \mathbf{P}.\mathbf{E}_{g2} \\ \mathbf{M}.\mathbf{E} &= \frac{1}{2} \mathbf{m}_1 \mathbf{v}^2 + \mathbf{m}_1 \mathbf{g} \ (\mathbf{h}_1 + \mathbf{x}\mathbf{s}\mathbf{i}\mathbf{\alpha} \) + \frac{1}{2} \mathbf{m}_2 \mathbf{v}^2 + \mathbf{m}_2 \mathbf{g} \ (\mathbf{h}_2 - \mathbf{x}) \end{split}$	1
1.c	$\frac{1/2}{2} m_1 v^2 + m_1 g (h_1 + x \sin \alpha) + \frac{1}{2} m_2 v^2 + m_2 g (h_2 - x) = m_1 g h_1 + m_2 g h_2$ $\Rightarrow \frac{1}{2} (m_1 + m_2) v^2 = (m_2 - m_1 \sin \alpha) g x \Rightarrow v^2 = \frac{2(m_2 - m_1 \sin \alpha) g x}{(m_1 + m_2)}.$	3⁄4
1.d	Derive the expression of v ² w.r.t time , we get: $2va = \frac{2(m_2 - m_1 \sin \alpha)g}{(m_1 + m_2)} v \Rightarrow a = \frac{(m_2 - m_1 \sin \alpha)g}{(m_1 + m_2)}.$	1
A.2.a	\vec{T}_{1} \vec{T}_{2} \vec{T}_{2} $m_{2}\vec{g}$	11/4
2.b	The relation $\Sigma \vec{F}_{ext} = m_1 \vec{a_1}$ applied on S_1 gives: $\vec{m}_1 g + \vec{N}_1 + \vec{T}_1 = m_1 \vec{a}_1 \dots (1)$ Projecting (1) on the axis \vec{ox} we get : $-m_1 g \sin \alpha + T_1 = m_1 a_1 \Rightarrow$ $T_1 = m_1 g \sin \alpha + m_1 a$ (with $a_1 = a_2 = a$). The relation $\Sigma \vec{F}_{ext} = m_2 \vec{a_2}$ applied on S_2 gives : $m_2 \vec{g} + \vec{T}_2 = m_2 \vec{a}_2 \dots (2)$ Projecting (2) on the vertically downward axis we get: $m_2 g - T_2 = m_2 a_2 \Rightarrow T_2 = m_2 g - m_2 a$.	2
2.c	The relation $T_1 = T_2$ gives: $m_1 g \sin \alpha + m_1 a = m_2 g - m_2 a$ $\Rightarrow a = (\frac{m_2 - m_1 \sin \alpha}{m_1 + m_2})g.$	1/2

Second exercise (7 points)

Part of the Q	AnswerConservation of nucleons number: $235 + 1 = 94 + A + 3$ then $A = 139$ Conservation of charge number: $92 = Z + 54$ then $Z = 38$	
A.1.a		
A.1.b	$E = \Delta mc^{2}$ $= (234.9942+1.00866 - 93.8945 - 138.8892 - 3 \times 1.00866) \times 931.5$ $\Rightarrow Energy = 179.947 \text{ MeV}$	1
A.1.c.i	We have $235+1 = 236$ nucleons	1⁄4
A.1.c.ii	$E_1 = \frac{179.947}{236} = 0.76 \text{ MeV/nucleon}$	1⁄4
A.2.a	$E_0 = \frac{179.947}{100} = 1.79947$ MeV; which is much greater than 0.025 eV	1/2
A.2.b	They should be slowed down,	1⁄4
B.1	1 ¹ H	1⁄4
B.2	${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{A}_{Z}X + {}^{1}_{0}n$ 2+3 = A + 1 then A = 4 1+1 = Z then Z = 2 The helium nucleus ${}^{4}_{2}He$	1
B.3	$E' = \Delta mc^2 = (2.01355 + 3.0155 - 4.0015 - 1.00866) \times 931.5 = 17.596 \text{ MeV}$	1
B.4	We have $2 + 3 = 5$ nucleons $\Rightarrow E'_1 = \frac{17.596}{5} = 3.5912$ MeV/nucleon	1/2
С	E'_1 is greater than E_1 ; fusion is more efficient.	1/2

Third exercise (6 ¹/₂ points)