| الاورة الإستثنـائيةّ للعام 2011 | امتحانات الثشهادة الثلانويـة العامة الفرع : علوم الحياة | وزارة التربيةّ والتعليم العالثي المديرية العامـة للتربية دائرة الامتحانـات |
| :---: | :---: | :---: |
| الرقم: الاسم: | مسابقة في مادة الفيزياء المدة ساعتان |  |

## This exam is formed of three exercises in three pages.

 The use of a non-programmable calculator is allowed
## First Exercise ( $6^{1 / 2}$ points)

## Determination of the inductance of a coil

In order to determine the inductance $L$ of a coil of negligible resistance, we connect this coil in series with a resistor of resistance $\mathrm{R}=10 \Omega$ across the terminals of a generator G (Fig. 1). The generator G delivers an alternating sinusoidal voltage $u_{A D}=u_{G}=U_{m} \cos \omega t\left(u_{G}\right.$ in $V, t$ in $\left.s\right)$.
The circuit thus carries a current i .

1) Redraw a diagram of figure (1), showing on it the connections of an oscilloscope so as to display the voltage $u_{G}$ across the terminals of the generator and the voltage $u_{R}=u_{B D}$ across the terminals of the resistor.


Fig. 1
2) Which of these two voltages represents the image of i?

Justify your answer
3) In figure 2 , the waveform (1) represents the variation of $u_{G}$ as a function of time.

- Horizontal sensitivity: $5 \mathrm{~ms} /$ div.
- Vertical sensitivity on both channels: 1 V/div.
a) Specify, with justification, which of the waveforms, (1) or (2), leads the other.
b) Determine:
i. The phase difference between these two waveforms.
ii. The angular frequency $\omega$.
iii. The maximum value $\mathrm{U}_{\mathrm{m}}$ of the voltage across G .
$i \boldsymbol{v}$. The amplitude $\mathrm{I}_{\mathrm{m}}$ of i.
c) Write down the expression of $i$ as a function of time $t$.

4) Determine the voltage $u_{A B}=u_{L}$ across the


Fig. 2 terminals of the coil as a function of $L$ and $t$.
5) Determine the value of $L$ by applying the law of addition of voltages and by giving $t$ a particular value.

## Second Exercise (7 points)

## Acceleration of a particle

The object of this exercise is to determine the expression of the magnitude of the acceleration of a particle using two methods. The apparatus used is formed of two particles $\left(S_{1}\right)$ and $\left(S_{2}\right)$ of respective masses $m_{1}$ and $m_{2}$, fixed at the extremities of an inextensible string passing over the groove of a pulley. $\left(\mathrm{S}_{1}\right),\left(\mathrm{S}_{2}\right)$, the string and the pulley form a mechanical system (S).
The string and the pulley have negligible mass.
$\left(\mathrm{S}_{1}\right)$ may move on the line of greatest slope $A B$ of an inclined plane that makes an angle $\alpha$ with the horizontal AC and $\left(\mathrm{S}_{2}\right)$ hangs vertically.
At rest, $\left(\mathrm{S}_{1}\right)$ is found at point O at a height $h_{1}$ above AC and $\left(\mathrm{S}_{2}\right)$ is found at
 $\mathrm{O}^{\prime}$ at a height $\mathrm{h}_{2}$ (adjacent figure).
At the instant $t_{0}=0$, we release the system ( S ) from rest. $\left(\mathrm{S}_{1}\right)$ ascends on $A B$ and $\left(\mathrm{S}_{2}\right)$ descends vertically.
At an instant $t$, the position of $\left(\mathrm{S}_{1}\right)$ is defined by its abscissa $\mathrm{x}=\overline{\mathrm{OS}_{1}}$ on an axis $\mathrm{x}^{\prime} \mathrm{Ox}$ confounded with
$A B$, directed from $A$ to $B$.
Take the horizontal plane containing AC as a gravitational potential energy reference.
Neglect all the forces of friction.

## 1) Energetic method

a) Write down, at the instant $\mathrm{t}_{0}=0$, the expression of the mechanical energy of the system [(S), Earth] in terms of $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~h}_{1}, \mathrm{~h}_{2}$ and g .
b) At the instant $t$, the abscissa of $\left(S_{1}\right)$ is $x$ and the algebraic value of its velocity is $v$.

Determine, at that instant t , the expression of the mechanical energy of the system [(S), Earth] in terms of $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~h}_{1}, \mathrm{~h}_{2}, \mathrm{x}, \mathrm{v}, \alpha$ and g .
c) Applying the principle of conservation of mechanical energy, show that:

$$
\mathrm{v}^{2}=\frac{2\left(\mathrm{~m}_{2}-\mathrm{m}_{1} \sin \alpha\right) \mathrm{gx}}{\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)} .
$$

d) Deduce the expression of the value $a$ of the acceleration of $\left(\mathrm{S}_{1}\right)$.

## 2) Dynamical method

a) Redraw a diagram of the figure and show, on it, the external forces acting on $\left(\mathrm{S}_{1}\right)$ and on $\left(\mathrm{S}_{2}\right)$. (The tension in the string acting on $\left(\mathrm{S}_{1}\right)$ is denoted by $\overrightarrow{\mathrm{T}}_{1}$ of magnitude $\mathrm{T}_{1}$ and that acting on $\left(\mathrm{S}_{2}\right)$ is denoted by $\overrightarrow{\mathrm{T}}_{2}$ of magnitude $\mathrm{T}_{2}$ ).
b) Applying the theorem of the center of mass $\Sigma \overrightarrow{\mathrm{F}}_{\mathrm{ext}}=\mathrm{m} \overrightarrow{\mathrm{a}}$, on each particle, determine the expressions of $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ in terms of $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~g}, \alpha$ and a .
c) Knowing that $\mathrm{T}_{1}=\mathrm{T}_{2}$, deduce the expression of a .

## Third Exercise ( $6^{1 / 2}$ points)

## Provoked Nuclear Reactions

The object of this exercise is to compare the energy liberated per nucleon in a nuclear fission with that liberated in a nuclear fusion.

Given:

| Symbol | ${ }_{0}^{1} \mathrm{n}$ | ${ }_{1}^{2} \mathrm{H}$ | ${ }_{1}^{3} \mathrm{H}$ | ${ }_{2}^{4} \mathrm{He}$ | ${ }_{92}^{235} \mathrm{U}$ | ${ }_{\mathrm{Z}}^{94} \mathrm{Sr}$ | ${ }_{54}^{\mathrm{A}} \mathrm{Xe}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mass in u | 1.00866 | 2.01355 | 3.01550 | 4.0015 | 234.9942 | 93.8945 | 138.8892 |

$1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$

## A - Nuclear fission

The fission of uranium 235 is used to produce energy.

1) The fission of one uranium 235 nucleus takes place by bombarding this nucleus by a slow (thermal) neutron of kinetic energy around 0.025 eV . The equation of this reaction is written as :

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{\mathrm{Z}}^{94} \mathrm{Sr}+{ }_{54}^{\mathrm{A}} \mathrm{Xe}+3{ }_{0}^{1} \mathrm{n}
$$

a) Calculate A and Z specifying the laws used.
b) Show that the energy E liberated by the fission of one uranium nucleus is 179.947 MeV .
c) $i$ ) The number of nucleons participating in this reaction is 236 . Why?
ii) Calculate then $\mathrm{E}_{1}$, the energy liberated per nucleon participating in this fission reaction.
2) Each of the obtained neutrons has an average kinetic energy $\mathrm{E}_{0}=\frac{\mathrm{E}}{100}$.
a) In this case, the obtained neutrons do not, in general, provoke fission. Why?
b) What then should be done in order to obtain a fission reaction?

## B - Nuclear fusion

Nowadays, many researches are performed in order to produce energy by nuclear fusion. The most accessible is the reaction between a deuterium nucleus ${ }_{1}^{2} \mathrm{H}$ and a tritium nucleus ${ }_{1}^{3} \mathrm{H}$.

1) The deuterium and the tritium are two isotopes of hydrogen. Write down the symbol of the third isotope of hydrogen.
2) Write down the fusion reaction of a deuterium nucleus with a tritium nucleus knowing that this reaction liberates a neutron and a nucleus ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$. Calculate Z and A and give the name of the nucleus ${ }_{Z}^{A} \mathrm{X}$.
3) Show that the energy liberated by this reaction is $\mathrm{E}^{\prime}=17.596 \mathrm{MeV}$.
4) Calculate $E_{1}^{\prime}$ the energy liberated per nucleon participating in this reaction.

## C-Conclusion

Compare $\mathrm{E}_{1}$ and $\mathrm{E}_{1}^{\prime}$ and conclude.

| الالورة الإستثنّائيةُ للعام 2011 | امتحانـات الثشهادة الثلانويـة العامة الفرع : علوم الحياة | وزارة التربيةّ والتتليم العالثي المديرية العامـة للتربية دائرة الامتحاتـات |
| :---: | :---: | :---: |
| الالرقم: | مسابقة في مـادة الفيزياء المدة ساعتان | مشروع مـيار التصحيح |

## First exercise ( $6^{1 / 2}$ points)

| Part of the Q . | Answer | Mark |
| :---: | :---: | :---: |
| 1 |  | 1/2 |
| 2 | $\mathrm{u}_{\mathrm{R}}=\mathrm{Ri}, \mathrm{u}_{\mathrm{R}}$ is proportional to i . | 1/2 |
| 3-a | $\mathrm{u}_{1}$ becomes zero before $\mathrm{u}_{2}$, thus $\mathrm{u}_{1}=\mathrm{u}_{\mathrm{G}}$ leads $\mathrm{i}\left(\mathrm{u}_{2}=u_{\mathrm{R}}\right.$ represents i ). | 1/2 |
| 3 -b-i | $\begin{aligned} & \mathrm{T} \leftrightarrow 5 \operatorname{div} \leftrightarrow 2 \pi \mathrm{rad} \\ & \quad 0.63 \operatorname{div} \leftrightarrow \varphi \Rightarrow \varphi=2 \pi \times \frac{0.63}{5}=0.79 \mathrm{rd} \end{aligned}$ | 3/4 |
| 3-b-ii | $\begin{aligned} & \mathrm{T}=5(\mathrm{div}) \times 5 \mathrm{~ms} / \mathrm{div}=25 \mathrm{~ms} \\ & \omega=\frac{2 \pi}{\mathrm{~T}}=251.3 \mathrm{rad} / \mathrm{s} \end{aligned}$ | 1/2 |
| 3 -b-iii | $\mathrm{Um}=4(\mathrm{div}) \times 1 \mathrm{~V} / \mathrm{div}=4 \mathrm{~V}$ | 1/2 |
| 3 -b-iv | $\begin{aligned} & \mathrm{U}_{\mathrm{Rm}}=2.8 \times 1=2.8 \mathrm{~V} \\ & \Rightarrow \mathrm{I}_{\mathrm{m}}=\frac{\mathrm{U}_{\mathrm{Rm}}}{\mathrm{R}}=\frac{2.8}{10}=0.28 \mathrm{~A} \end{aligned}$ | 3/4 |
| $3-\mathrm{c}$ | $\begin{aligned} & \mathrm{i} \text { lags } \mathrm{u}_{\mathrm{G}} \text { by } 0.79 \mathrm{rad} ; \\ & \mathrm{i}=\mathrm{I}_{\mathrm{m}} \cos (\omega \mathrm{t}-0.79) \\ & \mathrm{i}=0.28 \cos (80 \pi \mathrm{t}-0.79) \end{aligned}$ | 1/2 |
| 4 | $\mathrm{u}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=-70.37 \mathrm{~L} \sin (80 \pi \mathrm{t}-0.79)$ | 1 |
| 5 | $\begin{aligned} & u_{G}=u_{R}+u_{L}=R i+u_{L} \\ & 4 \cos (80 \pi t)=2.8 \cos (80 \pi t-0.79)-70.37 L \sin (80 \pi t-0.79) \\ & \text { For } t=0 ; \mathrm{L}=0.04 \mathrm{H}=40 \mathrm{mH} . \end{aligned}$ | 1 |

Second exercise (7 points)

| Part of the $\mathbf{Q}$ | Answer | Mark |
| :---: | :---: | :---: |
| 1.a |  | 1/2 |
| 1.b | $\begin{aligned} & \text { M.E }=\mathrm{KE}_{1}+\text { P. } \mathrm{E}_{\mathrm{g} 1}+\text { K.E } \mathrm{E}_{2}+\text { P. } \mathrm{E}_{\mathrm{g} 2} \\ & \text { M.E }=1 / 2 \mathrm{~m}_{1} \mathrm{v}^{2}+\mathrm{m}_{1} \mathrm{~g}\left(\mathrm{~h}_{1}+\mathrm{x} \sin \alpha\right)+1 / 2 \mathrm{~m}_{2} \mathrm{v}^{2}+\mathrm{m}_{2} \mathrm{~g}\left(\mathrm{~h}_{2}-\mathrm{x}\right) \end{aligned}$ | 1 |
| $1 . \mathrm{c}$ | $\begin{aligned} & 1 / 2 m_{1} v^{2}+m_{1} g\left(h_{1}+x \sin \alpha\right)+1 / 2 m_{2} v^{2}+m_{2} g\left(h_{2}-x\right)=m_{1} g h_{1}+m_{2} g h_{2} \\ & \Rightarrow 1 / 2\left(m_{1}+m_{2}\right) v^{2}=\left(m_{2}-m_{1} \sin \alpha\right) g x \Rightarrow v^{2}=\frac{2\left(m_{2}-m_{1} \sin \alpha\right) g x}{\left(m_{1}+m_{2}\right)} . \end{aligned}$ | 3/4 |
| 1.d | Derive the expression of $\mathrm{v}^{2}$ w.r.t time, we get: $2 \mathrm{va}=\frac{2\left(\mathrm{~m}_{2}-\mathrm{m}_{1} \sin \alpha\right) \mathrm{g}}{\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)} \mathrm{v} \Rightarrow \mathrm{a}=\frac{\left(\mathrm{m}_{2}-\mathrm{m}_{1} \sin \alpha\right) \mathrm{g}}{\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}$ | 1 |
| A.2.a |  | 1114 |
| 2.b | The relation $\Sigma \overrightarrow{\mathrm{F}}_{\mathrm{ext}}=\mathrm{m}_{1} \overrightarrow{\mathrm{a}_{1}}$ applied on $\mathrm{S}_{1}$ gives: $\begin{equation*} \overrightarrow{\mathrm{m}}_{1} \mathrm{~g}+\overrightarrow{\mathrm{N}}_{1}+\overrightarrow{\mathrm{T}}_{1}=\mathrm{m}_{1} \overrightarrow{\mathrm{a}}_{1} \tag{1} \end{equation*}$ <br> Projecting (1) on the axis $\overrightarrow{\text { ox }}$ we get : $-\mathrm{m}_{1} \mathrm{~g} \sin \alpha+\mathrm{T}_{1}=\mathrm{m}_{1} \mathrm{a}_{1} \Rightarrow$ $\mathrm{T}_{1}=\mathrm{m}_{1} \mathrm{~g} \sin \alpha+\mathrm{m}_{1} \mathrm{a}$ (with $\mathrm{a}_{1}=\mathrm{a}_{2}=\mathrm{a}$ ). <br> The relation $\Sigma \overrightarrow{\mathrm{F}}_{\text {ext }}=\mathrm{m}_{2} \overrightarrow{\mathrm{a}_{2}}$ applied on $\mathrm{S}_{2}$ gives : $\begin{equation*} \mathrm{m}_{2} \overrightarrow{\mathrm{~g}}+\overrightarrow{\mathrm{T}}_{2}=\mathrm{m}_{2} \overrightarrow{\mathrm{a}}_{2} \quad \ldots \tag{2} \end{equation*}$ <br> Projecting (2) on the vertically downward axis we get: $\mathrm{m}_{2} \mathrm{~g}-\mathrm{T}_{2}=\mathrm{m}_{2} \mathrm{a}_{2} \Rightarrow \mathrm{~T}_{2}=\mathrm{m}_{2} \mathrm{~g}-\mathrm{m}_{2} \mathrm{a} .$ | 2 |
| 2.c | The relation $\mathrm{T}_{1}=\mathrm{T}_{2}$ gives: $\mathrm{m}_{1} \mathrm{~g} \sin \alpha+\mathrm{m}_{1} \mathrm{a}=\mathrm{m}_{2} \mathrm{~g}-\mathrm{m}_{2} \mathrm{a}$ $\Rightarrow \mathrm{a}=\left(\frac{\mathrm{m}_{2}-\mathrm{m}_{1} \sin \alpha}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right) \mathrm{g}$. | 1/2 |

## Third exercise ( $6^{1 / 2}$ points)

| Part of the $Q$ | Answer | Mark |
| :---: | :---: | :---: |
| A.1.a | Conservation of nucleons number: $235+1=94+\mathrm{A}+3$ then $\mathrm{A}=139$ Conservation of charge number: $92=\mathrm{Z}+54$ then $\mathrm{Z}=38$ | 1 |
| A.1.b | $\begin{aligned} \mathrm{E} & =\Delta \mathrm{mc}^{2} \\ & =(234.9942+1.00866-93.8945-138.8892-3 \times 1.00866) \times 931.5 \\ \Rightarrow & \text { Energy }=179.947 \mathrm{MeV} \end{aligned}$ | 1 |
| A.1.c.i | We have 235+1 = 236 nucleons | $1 / 4$ |
| A.1.c.ii | $\mathrm{E}_{1}=\frac{179.947}{236}=0.76 \mathrm{MeV} / \text { nucleon }$ | $1 / 4$ |
| A.2.a | $\mathrm{E}_{0}=\frac{179.947}{100}=1.79947 \mathrm{MeV}$; which is much greater than 0.025 eV | 1/2 |
| A.2.b | They should be slowed down, | 1/4 |
| B. 1 | ${ }_{1}^{1} \mathrm{H}$ | 1/4 |
| B. 2 | $\begin{aligned} & { }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}+{ }_{0}^{1} \mathrm{n} \\ & 2+3=\mathrm{A}+1 \text { then } \mathrm{A}=4 \quad 1+1=\mathrm{Z} \text { then } \mathrm{Z}=2 \end{aligned}$ <br> The helium nucleus ${ }_{2}^{4} \mathrm{He}$ | 1 |
| B. 3 | $\mathrm{E}^{\prime}=\Delta \mathrm{mc}^{2}=(2.01355+3.0155-4.0015-1.00866) \times 931.5=17.596 \mathrm{MeV}$ | 1 |
| B. 4 | We have $2+3=5$ nucleons $\Rightarrow \mathrm{E}_{1}^{\prime}=\frac{17.596}{5}=3.5912 \mathrm{MeV} /$ nucleon | 1/2 |
| C | $E_{1}^{\prime}$ is greater than $E_{1}$; fusion is more efficient. | 1/2 |

