الالورة الإستثّنائيةّ للعام 2010	امتحانـات الثهادة الثّانوية العامة الفرع : علوم الحياة	وزارة التربيةّ والتُعليم العالكي المديرية العامـة للتربية دائرة الامتحانـات
الرقم: الاسم:	مسابقة في مادة الفيزياء المدة ساعتان	

This exam is formed of three exercises in three pages.

The use of non-programmable calculators is recommended.

First Exercise: (7 points) Study of an RLC series circuit

The circuit of (fig. 1) is formed of a coil(L, r, , a resistor of resistance $\mathrm{R}=50 \Omega$ and a capacitor of capacitance $\mathrm{C}=64 \mu \mathrm{~F}$ all connected in series across a generator G that maintains, across its terminals A and D , an alternating sinusoidal voltage of adjustable frequency f and of constant effective value U. The circuit thus carries an alternating sinusoidal current i whose expression as a function of time is given by:
$\mathrm{i}=\mathrm{I}_{\mathrm{m}} \sin (2 \pi \mathrm{ft}) \quad(\mathrm{i}$ in A, t in s$)$.
An oscilloscope, conveniently connected, allows us to display the voltage $u_{B M}$ across the coil on channel Y_{1}, and the voltage $u_{M D}$ across the resistor on channel Y_{2}. We obtain the waveforms (a) and (b) represented in figure 2. The vertical sensitivity on both channels is $2 \mathrm{~V} / \mathrm{div}$.
The horizontal sensitivity is $5 \mathrm{~ms} /$ div.
Take: $0.32 \pi=1$.

Fig. 2

1) The button "INV" of channel Y_{2} is pressed. Why?
2) Which one of the two waveforms represents the voltage $u_{\text {BM }}$? Why?
3) Referring to figure 2 ,
a) calculate f;
b) i) calculate the phase difference between the voltages u_{BM} and u_{MD};
ii) deduce that the coil has no resistance;
c) calculate the maximum voltage $\mathrm{U}_{\mathrm{BM}(\max)}$ across the coil;
d) calculate the maximum voltage $\mathrm{U}_{\mathrm{MD}(\max)}$ across the resistor.
4) Show that the expression of the voltage $u_{M D}$ is of the form:
$u_{M D}=7 \sin (100 \pi t) \quad\left(u_{M D}\right.$ in V, t in $\left.s\right)$.
5) Determine, as a function of time, the expression of :
a) the current i ;
b) the voltage $u_{B M}$;
c) the voltage u_{AB} across the capacitor.
6) a) Applying the law of addition of voltages, determine the expression of the voltage u_{AD} across the generator as a function of time.
b) i) Deduce that the average electric power P consumed in the circuit is maximum.
ii) Calculate P .

A metallic plate, covered with a layer of cesium, is illuminated with a monochromatic luminous beam of wavelength $\lambda=0.45 \times 10^{-6} \mathrm{~m}$ in vacuum.
The work function (extraction energy) of cesium is $\mathrm{W}_{0}=1.88 \mathrm{eV}$.
A convenient apparatus (D) is used to detect the electrons emitted by the illuminated plate.
Given: Planck's constant $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J}$. s; speed of light in vacuum $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$; $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$; elementary charge $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$.

1) What aspect of light does the phenomenon of photoelectric effect show evidence of ?
2) Define the term "work function" of a metal.
3) The luminous beam illuminating the metallic plate is formed of photons.
a) i) Write down the expression of the energy E of a photon in terms of h, c and λ.
ii) Calculate, in eV , the energy of an incident photon.
b) (D) detects electrons emitted by the plate.

Why do we have an emission of electrons by the plate?
c) Calculate, in eV , the maximum kinetic energy of an emitted electron.
4) The luminous power P received by the plate is $10^{-3} \mathrm{~W}$, and the emitted electrons form a current $\mathrm{I}=5 \mu \mathrm{~A}$.
a) Calculate the number n of photons received by the plate in one second.
b) Knowing that the current I is related to the number N of the electrons emitted per second and to the elementary charge e by the relation: $I=N \times e$. Calculate N.
c) i) Calculate the quantum efficiency $\mathrm{r}=\frac{\mathrm{N}}{\mathrm{n}}$.
ii) Deduce that the number of effective photons in one second is relatively small.
d) We increase the luminous power P received by the plate without changing the wavelength λ. Would the current increase or decrease? Why?

Resistive force on a car

A car of mass $\mathrm{M}=1500 \mathrm{~kg}$ moves on a straight horizontal road; its center of gravity G is moving on the axis $(\mathrm{O}, \overrightarrow{\mathrm{i}})$.
The car is acted upon by the forces:

- its weight;
- the normal reaction of the road;
- a constant motive force $\vec{F}_{m}=F_{m} \vec{i}$ where $F_{m}=3500 \mathrm{~N}$;
- a resistive force $\vec{F}_{f}=-F_{f} \vec{i}$.

In order to determine F_{f}, we measure the speed V of the car at different instants, separated by equal time intervals each being $\tau=1 \mathrm{~s}$.
A - Value of $\overrightarrow{\mathrm{F}}_{\mathrm{f}}$ between the instants $\mathrm{t}_{0}=0$ and $t_{5}=5 \mathrm{~s}$
The results of the obtained recordings are tabulated as follows:

Instant	$\mathrm{t}_{0}=0$	$\mathrm{t}_{1}=\tau$	$\mathrm{t}_{2}=2 \tau$	$\mathrm{t}_{3}=3 \tau$	$\mathrm{t}_{4}=4 \tau$	$\mathrm{t}_{5}=5 \tau$
Position	O	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}
$\mathrm{~V}(\mathrm{~m} / \mathrm{s})$	0	2	4	6	8	10

1) Using the scale below, draw the curve representing the variation of the speed V as a function of time.

- 1 cm on the axis of abscissas represents 1 s ;
- 1 cm on the axis of ordinates represents $1 \mathrm{~m} / \mathrm{s}$.

2) Show that the relation between the velocity $\vec{V}=V \vec{i}$ at a time t has the form $\vec{V}=b t \vec{i}$ where b is a constant.
3) a) the constant b is a characteristic physical quantity of motion. Give its name .
b) Calculate its value.
4) Applying Newton's second law,
a) show that F_{f} is constant between $\mathrm{t}_{0}=0$ and $\mathrm{t}_{5}=5 \mathrm{~s}$;
b) calculate the value F_{f} of \vec{F}_{f}.

B - Variation of F_{f} between the instants $t_{5}=5 \mathrm{~s}$ and $t=140 \mathrm{~s}$

In reality, the measurement of the speed between the instants $\mathrm{t}_{0}=0$ and $\mathrm{t}=140 \mathrm{~s}$ allows us to plot the graph of the adjacent figure.

1) Show that the part of this graph between the instants $\mathrm{t}_{0}=0$ and $\mathrm{t}_{5}=5 \mathrm{~s}$ is in agreement with the graph of part A .
2) We draw the tangent MN to the curve at the point P at the instant t_{P} where $V_{P}=45 \mathrm{~m} / \mathrm{s}$.
a) Determine the value of the acceleration at the instant t_{p}.
b) Deduce the value of F_{f} at the instant t_{P}.
3) Starting from the instant $100 \mathrm{~s}, \mathrm{~V}$ attains a limiting value of $\mathrm{V}_{\ell}=50 \mathrm{~m} / \mathrm{s}$.
Calculate then the value of F_{f}.
4) Indicate the time interval during which F_{f} increases.

الاورة الإستثنائية للعام 2010	امتحانات الثشهادة الثانوية العامة الفرع : علوم الحياة	وزارة اللتربيةّ والتعليم العالثي المديرية العامـة للتربية دائرة الامتحـانـات
الالرقم:	مسابقة في مادة الفيزياء المدة ساعتان	مشروع مـيار التصحيح

First Exercise (7 points)

Part of the Ex.	Answer	Mark
1	To display u_{MD} and not u_{DM}	0.25
2	The voltage of a coil leads the current i, thus (b) represents $u_{\text {BM }}$.	0.5
3.a	The period T corresponds to 4 div , thus $\mathrm{T}=4 \mathrm{div} \times 5 \mathrm{~ms} / \mathrm{div}=20 \mathrm{~ms}$. $\mathrm{f}=\frac{1}{\mathrm{~T}}=\frac{1}{20 \times 10^{-3}}=50 \mathrm{~Hz}$	0.75
3.b.i	4 divisions correspond to a difference in phase 2π rad. 1 division corresponds to $\varphi_{1} \mathrm{rd}$, thus $\left\|\varphi_{1}\right\|=\frac{2 \pi \times 1}{4}=\frac{\pi}{2} \mathrm{rad}$.	0.75
3.bii	Phase difference between $u_{B M}$ and i being $\frac{\pi}{2}$ rad, thus the coil has a negligible resistance	0.5
$3 . \mathrm{c}$	$\mathrm{u}_{\mathrm{BM}(\max)}=3.5 \mathrm{div} \times 2 \mathrm{~V} / \mathrm{div}=7 \mathrm{~V}$.	0.25
3.d	$\mathrm{u}_{\mathrm{MD}(\max)}=3.5 \mathrm{div} \times 2 \mathrm{~V} / \mathrm{div}=7 \mathrm{~V}$	0.25
4	u_{MD} is in phase with $\mathrm{i} \Rightarrow \mathrm{u}_{\mathrm{MD}}=\mathrm{u}_{\mathrm{MD}(\max)} \sin 2 \pi \mathrm{ft}=7 \sin (100 \pi \mathrm{t})$	0.5
5.a	$\mathrm{u}_{\mathrm{MD}(\max)}=\mathrm{RI}_{\mathrm{m}} \Rightarrow \mathrm{I}_{\mathrm{m}}=\frac{7}{50}=0.14 \mathrm{~A} \Rightarrow \mathrm{i}=0.14 \sin (100 \pi \mathrm{t})$	0.5
5.b	$\mathrm{u}_{\mathrm{BM}}=\mathrm{u}_{\mathrm{BM}(\max)} \sin \left(100 \pi \mathrm{t}+\frac{\pi}{2}\right)=7 \sin \left(100 \pi \mathrm{t}+\frac{\pi}{2}\right)=7 \cos (100 \pi \mathrm{t})$	0.5
5.c	$\begin{aligned} & \mathrm{i}=\mathrm{C} \Rightarrow \frac{\mathrm{du}_{\mathrm{AB}}}{\mathrm{dt}} \mathrm{U}_{\mathrm{AB}}=\frac{1}{\mathrm{C}} \text { primitive of } \mathrm{I}=-\frac{0.14}{100 \pi \mathrm{C}} \cos (100 \pi \mathrm{t}) . \\ & \mathrm{i}=-7 \cos (100 \pi \mathrm{t}) . \end{aligned}$	0.75
$6 . a$	$\begin{aligned} & \mathrm{u}_{\mathrm{AD}}=\mathrm{u}_{\mathrm{AB}}+\mathrm{u}_{\mathrm{BM}}+\mathrm{u}_{\mathrm{MD}} \\ & \mathrm{u}_{\mathrm{AD}}=-7 \cos (100 \pi \mathrm{t})+7 \cos (100 \pi \mathrm{t})+7 \sin (100 \pi \mathrm{t}) . \\ & \mathrm{u}_{\mathrm{AD}}=7 \sin (100 \pi \mathrm{t}) \end{aligned}$	0.5
6.b.i	The phase difference between $u_{A D}=u_{G}$ and i is null, the circuit is the seat of current resonance where I_{m} is in this case has a maximum value. $\cos \varphi=1$ is max. Thus P is max.	0.5
6.b.ii	$\mathrm{P}=\mathrm{UI}=\frac{0.14}{\sqrt{2}} \times \frac{7}{\sqrt{2}}=0.49 \mathrm{~W} .$	0.5

Second Exercise: (6 points)

Part of the EX.	Answer	Mark
1	Corpuscular aspect of light	0.25
2	The extraction energy of a substance is the minimum energy needed to extract an electron from the substance	0.5
3.a.i	$\mathrm{E}=\frac{\mathrm{hc}}{\lambda}$	0.25
3.a.ii	$\mathrm{E}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{0.45 \times 10^{-6}}=44 \times 10^{-20} \mathrm{~J}=2.75 \mathrm{eV}$.	0.75
3.b	Since $\mathrm{E}=2.75 \mathrm{eV}$ is $>\mathrm{W}_{0}=1.88 \mathrm{eV}$	0.5
3.c	Einstein's relation about photoelectric effect is: $\mathrm{E}=\mathrm{W}_{0}+\mathrm{KE} \Rightarrow \mathrm{KE}=2.75-1.88=0.87 \mathrm{eV}$	0.75
4.a	$\mathrm{P}=\mathrm{nE} \Rightarrow \mathrm{n}=\frac{1 \times 10^{-3}}{44 \times 10^{-20}}=227 \times 10^{13} \mathrm{photons} / \mathrm{s}$.	

Third Exercise: (7 points)

Part of the Ex.	Answer	Mark
A. 1		1
A. 2	The graph is a straight line passing through the origin, in agreement with the function $\vec{V}=b t \vec{i}$ where b is a constant	0.5
A.3.a	b the acceleration of the motion;.	0.5
A.3.b	$\mathrm{b}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{t}}=\frac{10-0}{5}=2 \mathrm{~m} / \mathrm{s}^{2} .$	1
A.4.a	$\sum \overrightarrow{\mathrm{F}}_{\mathrm{ext}}=\frac{\mathrm{d} \overrightarrow{\mathrm{P}}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{~d} \overrightarrow{\mathrm{P}}}{\mathrm{dt}}=\mathrm{M} \overrightarrow{\mathrm{~g}}+\overrightarrow{\mathrm{R}}+\overrightarrow{\mathrm{F}}_{\mathrm{m}}+\overrightarrow{\mathrm{F}}_{\mathrm{f}}$ Projection along the horizontal: $\begin{aligned} & \mathrm{M} \frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{F}_{\mathrm{m}}-\mathrm{F}_{\mathrm{f}} \Rightarrow \mathrm{Mb}=\mathrm{F}_{\mathrm{m}}-\mathrm{F}_{\mathrm{f}} ; \\ & \mathrm{F}_{\mathrm{m}}=\text { const. } \\ & \mathrm{M}=\text { const. and } \mathrm{b}=\text { const. } \Rightarrow \mathrm{F}_{\mathrm{f}}=\text { constant } \end{aligned}$	1
A.4.b	$\Rightarrow \mathrm{F}_{\mathrm{f}}=\mathrm{F}_{\mathrm{m}}-\mathrm{mb} \mathrm{F}_{\mathrm{f}}=3500-1500 \times 2=500 \mathrm{~N}$	0.5
B. 1	For $\mathrm{V}<10 \mathrm{~m} / \mathrm{s}$, the part of the curve is a straight line	0.5
B.2.a	$\begin{aligned} & \mathrm{a}=\frac{\mathrm{dV}}{\mathrm{dt}} \text { is the slope of the tangent. } \\ & \mathrm{a}=\frac{60-33}{107-0}=0.25 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	0.75
B.2.b	$\mathrm{F}_{\mathrm{f}}=3500-1500 \times 0.25=3125 \mathrm{~N}$.	0.5
B. 3	$\mathrm{a}=0 \Rightarrow \mathrm{~F}_{\mathrm{f}}=\mathrm{F}_{\mathrm{m}}=3500 \mathrm{~N}$	0.5
B. 4	$5 \mathrm{~s}<\mathrm{t}<100 \mathrm{~s}$	0.25

