#### امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة

الاسم: الرقم:

### <u>This exam is formed of three exercises in three pages.</u> The use of non-programmable calculators is recommended.

## *<u>First Exercise</u>: (7 points)* Study of an RLC series circuit

The circuit of (fig. 1) is formed of a coil(L, r), a resistor of resistance  $R = 50 \Omega$  and a capacitor of capacitance  $C = 64 \mu F$  all connected in series across a generator G that maintains, across its terminals A and D, an alternating sinusoidal voltage of adjustable frequency f and of constant effective value U. The circuit thus carries an alternating sinusoidal current i whose expression as a function of time is given by:

 $i = I_m \sin(2\pi f t)$  (i in A, t in s).

An oscilloscope, conveniently connected, allows us to display the voltage  $u_{BM}$  across the coil on channel  $Y_1$ , and the voltage  $u_{MD}$  across the resistor on channel  $Y_2$ . We obtain the waveforms (a) and (b) represented in figure 2. The vertical sensitivity on both channels is 2V/div. The horizontal sensitivity is 5 ms/div.

Take:  $0.32\pi = 1$ .

- 1) The button "INV" of channel  $Y_2$  is pressed. Why?
- 2) Which one of the two waveforms represents the voltage u<sub>BM</sub>? Why?
- 3) Referring to figure 2,
  - *a*) calculate f;
  - *i*) calculate the phase difference between the voltages u<sub>BM</sub> and u<sub>MD</sub>;
    - *ii*) deduce that the coil has no resistance;
  - c) calculate the maximum voltage  $U_{BM(max)}$  across the coil;
  - *d*) calculate the maximum voltage  $U_{MD(max)}$  across the resistor.
- 4) Show that the expression of the voltage  $u_{MD}$  is of the form:  $u_{MD} = 7 \sin (100 \pi t)$  ( $u_{MD}$  in V, t in s).
- 5) Determine, as a function of time, the expression of :
  - *a*) the current i;
  - **b**) the voltage  $u_{BM}$ ;
  - c) the voltage  $u_{AB}$  across the capacitor.
- *a*) Applying the law of addition of voltages, determine the expression of the voltage u<sub>AD</sub> across the generator as a function of time.
  - b) i) Deduce that the average electric power P consumed in the circuit is maximum.ii) Calculate P.







### Second Exercise: (6 points) Photoelectric effect

A metallic plate, covered with a layer of cesium, is illuminated with a monochromatic luminous beam of wavelength  $\lambda = 0.45 \times 10^{-6}$  m in vacuum.

The work function (extraction energy) of cesium is  $W_0 = 1.88 \text{ eV}$ .

A convenient apparatus (D) is used to detect the electrons emitted by the illuminated plate.

<u>*Given*</u>: Planck's constant  $h = 6.6 \times 10^{-34}$  J.s; speed of light in vacuum  $c = 3 \times 10^8$  m/s;

 $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$ ; elementary charge  $e = 1.6 \times 10^{-19} \text{ C}$ .

- 1) What aspect of light does the phenomenon of photoelectric effect show evidence of ?
- 2) Define the term "work function" of a metal.
- 3) The luminous beam illuminating the metallic plate is formed of photons.
  - *i*) Write down the expression of the energy E of a photon in terms of h, c and λ. *ii*) Calculate, in eV, the energy of an incident photon.
  - *b*) (D) detects electrons emitted by the plate.

Why do we have an emission of electrons by the plate?

- c) Calculate, in eV, the maximum kinetic energy of an emitted electron.
- 4) The luminous power P received by the plate is  $10^{-3}$  W, and the emitted electrons form a current I = 5  $\mu$ A.
  - *a*) Calculate the number n of photons received by the plate in one second.
  - *b*) Knowing that the current I is related to the number N of the electrons emitted per second and to the elementary charge e by the relation:  $I = N \times e$ . Calculate N.
  - c) *i*) Calculate the quantum efficiency  $r = \frac{N}{n}$ .

*ii*) Deduce that the number of effective photons in one second is relatively small.

*d*) We increase the luminous power P received by the plate without changing the wavelength λ.Would the current increase or decrease? Why?

## Third Exercise: (7 points)

#### **Resistive force on a car**

A car of mass M = 1500 kg moves on a straight horizontal road; its center of gravity G is moving on the axis (O,  $\vec{i}$ ).

The car is acted upon by the forces:

- its weight;
- the normal reaction of the road;
- a constant motive force  $\vec{F}_m = F_m \vec{i}$  where  $F_m = 3500$  N;
- a resistive force  $\vec{F}_f = -F_f \vec{i}$ .

In order to determine  $F_f$ , we measure the speed V of the car at different instants, separated by equal time intervals each being  $\tau = 1$  s.

# $A - Value \ of \ \vec{F}_{f}$ between the instants $t_0 = 0$ and $t_5 = 5 \ s$

The results of the obtained recordings are tabulated as follows:

| Instant  | $t_0 = 0$ | $t_1 = \tau$   | $t_2 = 2 \tau$ | $t_3 = 3 \tau$        | $t_4 = 4 \tau$ | $t_5 = 5\tau$  |
|----------|-----------|----------------|----------------|-----------------------|----------------|----------------|
| Position | 0         | G <sub>1</sub> | G <sub>2</sub> | <b>G</b> <sub>3</sub> | $G_4$          | G <sub>5</sub> |
| V(m/s)   | 0         | 2              | 4              | 6                     | 8              | 10             |

- *1*) Using the scale below, draw the curve representing the variation of the speed V as a function of time.
  - 1 cm on the axis of abscissas represents 1 s;
  - 1 cm on the axis of ordinates represents 1 m/s.
- 2) Show that the relation between the velocity  $\vec{V} = V\vec{i}$  at a time t has the form  $\vec{V} = bt\vec{i}$  where b is a constant.
- 3) a) the constant b is a characteristic physical quantity of motion. Give its name.b) Calculate its value.
- 4) Applying Newton's second law,
  - *a*) show that  $F_f$  is constant between  $t_0 = 0$  and  $t_5 = 5$  s;
  - **b**) calculate the value  $F_f$  of  $\vec{F}_f$ .

### B – Variation of $F_f$ between the instants $t_5 = 5$ s and t = 140 s

In reality, the measurement of the speed between the instants  $t_0 = 0$  and t = 140 s allows us to plot the graph of the adjacent figure.

- *I*) Show that the part of this graph between the instants  $t_0 = 0$  and  $t_5 = 5$  s is in agreement with the graph of part A.
- 2) We draw the tangent MN to the curve at the point P at the instant  $t_P$  where  $V_P = 45$  m/s.
  - *a*) Determine the value of the acceleration at the instant t<sub>P</sub>.
  - **b**) Deduce the value of  $F_f$  at the instant  $t_P$ .
- 3) Starting from the instant 100s, V attains a limiting value of  $V_{\ell} = 50$  m/s. Calculate then the value of  $F_{f}$ .
- 4) Indicate the time interval during which F<sub>f</sub> increases.



| الدورة الإستثنائية للعام<br>2010 | امتحانات الشهادة الثانوية العامة<br>الفرع : علوم الحياة | وزارة التربية والتعليم العالي<br>المديرية العامة للتربية<br>دائرة الامتحانات |
|----------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|
| م:<br>;:                         | مسابقة في مادة الفيزياء الا<br>المدة ساعتان الر         | مشروع معيار التصحيح                                                          |

# First Exercise (7 points)

| Part of the Ex. | Answer                                                                                                                                                                                                | Mark |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1               | To display $u_{MD}$ and not $u_{DM}$                                                                                                                                                                  |      |
| 2               | The voltage of a coil leads the current i, thus (b) represents $u_{BM}$ .                                                                                                                             |      |
| 3.a             | The period T corresponds to 4 div, thus T = 4 div×5 ms/div = 20 ms.<br>$f = \frac{1}{T} = \frac{1}{20 \times 10^{-3}} = 50 \text{ Hz}$                                                                |      |
| 3.b.i           | 4 divisions correspond to a difference in phase $2\pi$ rad.<br>1 division corresponds to $\varphi_1$ rd, thus $ \varphi_1  = \frac{2\pi \times 1}{4} = \frac{\pi}{2}$ rad.                            | 0.75 |
| 3.bii           | Phase difference between $u_{BM}$ and i being $\frac{\pi}{2}$ rad, thus the coil has a negligible resistance                                                                                          | 0.5  |
| 3.c             | $u_{BM(max)} = 3.5 \text{ div} \times 2 \text{ V/div} = 7 \text{ V}.$                                                                                                                                 | 0.25 |
| 3.d             | $u_{MD(max)} = 3.5 \text{ div} \times 2 \text{ V/div} = 7 \text{ V}$                                                                                                                                  | 0.25 |
| 4               | $u_{MD}$ is in phase with $i \implies u_{MD} = u_{MD(max)} \sin 2\pi f t = 7 \sin (100\pi t)$                                                                                                         | 0.5  |
| 5.a             | $u_{MD(max)} = RI_m \implies I_m = \frac{7}{50} = 0.14 \text{ A} \implies i = 0.14 \text{sin}(100\pi t)$                                                                                              | 0.5  |
| 5.b             | $u_{BM} = u_{BM(max)} \sin (100\pi t + \frac{\pi}{2}) = 7 \sin (100\pi t + \frac{\pi}{2}) = 7 \cos(100\pi t)$                                                                                         | 0.5  |
| 5.c             | $i = C \Rightarrow \frac{du_{AB}}{dt} U_{AB} = \frac{1}{C} \text{ primitive of } I = -\frac{0.14}{100\pi C} \cos(100\pi t).$<br>$i = -7\cos(100\pi t).$                                               | 0.75 |
| 6.a             | $ \begin{aligned} & u_{AD} = u_{AB} + u_{BM} + u_{MD} \\ & u_{AD} = -7\cos(100\pi t) + 7\cos(100\pi t) + 7\sin(100\pi t). \\ & u_{AD} = 7\sin(100\pi t) \end{aligned} $                               | 0.5  |
| 6.b.i           | The phase difference between $u_{AD} = u_G$ and i is null, the circuit is the seat of current resonance where $I_m$ is in this case has a maximum value.<br>$\cos \varphi = 1$ is max. Thus P is max. | 0.5  |
| 6.b.ii          | P = UI = $\frac{0.14}{\sqrt{2}} \times \frac{7}{\sqrt{2}} = 0.49$ W.                                                                                                                                  | 0.5  |

# Second Exercise: (6 points)

| Part of the EX. | Answer                                                                                                                                                            |      |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1               | Corpuscular aspect of light                                                                                                                                       |      |
| 2               | The extraction energy of a substance is the minimum energy needed to extract an electron from the substance                                                       | 0.5  |
| 3.a.i           | $\mathbf{E} = \frac{\mathbf{h}\mathbf{c}}{\lambda}$                                                                                                               | 0.25 |
| 3.a.ii          | $E = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{0.45 \times 10^{-6}} = 44 \times 10^{-20} \text{ J} = 2.75 \text{ eV}.$                                      | 0.75 |
| 3.b             | Since $E = 2.75 \text{ eV}$ is > $W_0 = 1.88 \text{ eV}$                                                                                                          | 0.5  |
| 3.c             | Einstein's relation about photoelectric effect is:<br>$E = W_0 + KE \implies KE = 2.75 - 1.88 = 0.87 \text{ eV}$                                                  | 0.75 |
| 4.a             | $P = nE \implies n = \frac{1 \times 10^{-3}}{44 \times 10^{-20}} = 227 \times 10^{13} \text{ photons/s.}$                                                         | 0.75 |
| 4.b             | $N = \frac{5 \times 10^{-6}}{1.6 \times 10^{-19}} = 3.125 \times 10^{13} \text{ electrons/s}$                                                                     | 0.5  |
| 4.c.i           | r = 0.014 = 1.4 %.                                                                                                                                                | 0.5  |
| 4.c.ii          | r is small $\Rightarrow$ the number of effective photons per second is small                                                                                      | 0.25 |
| 4.d             | $P = nE = n\frac{hc}{\lambda}$ ; if we increase P keeping $\lambda$ constant, $\Rightarrow$ n increases<br>$\Rightarrow$ N = number of emitted electrons increase | 1    |
|                 | But $I = N \times e \implies I$ increases.                                                                                                                        |      |

# Third Exercise: (7 points)

| Part of the Ex. | Answer                                                                                                                                                                                                                                                                                                                                                                          |      |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
| A.1             | V(m/s)<br>10<br>8<br>4<br>4<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                         | 1    |  |  |  |
| A.2             | The graph is a straight line passing through the origin, in agreement with                                                                                                                                                                                                                                                                                                      |      |  |  |  |
|                 | the function $\vec{V} = bt\vec{i}$ where b is a constant                                                                                                                                                                                                                                                                                                                        |      |  |  |  |
| A.3.a           | b the acceleration of the motion;.                                                                                                                                                                                                                                                                                                                                              |      |  |  |  |
| A.3.b           | $b = \frac{\Delta V}{\Delta t} = \frac{10-0}{5} = 2m/s^2.$                                                                                                                                                                                                                                                                                                                      | 1    |  |  |  |
| A.4.a           | $\begin{split} \sum \vec{F}_{ext} &= \frac{d\vec{P}}{dt} \Rightarrow \frac{d\vec{P}}{dt} = M\vec{g} + \vec{R} + \vec{F}_{m} + \vec{F}_{f} .\\ \text{Projection along the horizontal:}\\ M \frac{dV}{dt} &= F_{m} - F_{f} \Rightarrow Mb = F_{m} - F_{f} ;\\ F_{m} &= \text{const.}\\ M &= \text{const. and } b = \text{const.} \Rightarrow F_{f} = \text{constant} \end{split}$ | 1    |  |  |  |
| A.4.b           | $\Rightarrow$ F <sub>f</sub> = F <sub>m</sub> - mb F <sub>f</sub> = 3500 - 1500 × 2 = 500 N                                                                                                                                                                                                                                                                                     |      |  |  |  |
| B.1             | For V $< 10$ m/s, the part of the curve is a straight line                                                                                                                                                                                                                                                                                                                      |      |  |  |  |
| B.2.a           | a = $\frac{dV}{dt}$ is the slope of the tangent.<br>a = $\frac{60-33}{107-0} = 0.25 \text{ m/s}^2$                                                                                                                                                                                                                                                                              | 0.75 |  |  |  |
| B.2.b           | $F_f = 3500 - 1500 \times 0.25 = 3125 \text{ N}.$                                                                                                                                                                                                                                                                                                                               | 0.5  |  |  |  |
| B.3             | $a = 0 \Longrightarrow F_f = F_m = 3500 \text{ N}$                                                                                                                                                                                                                                                                                                                              | 0.5  |  |  |  |
| B.4             | 5  s < t < 100  s                                                                                                                                                                                                                                                                                                                                                               | 0.25 |  |  |  |