الدورة العادية للعام 2010	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ساعتان	

<u>This exam is formed of three exercises in three pages.</u> <u>The use of non-programmable calculators is recommended.</u>

<u>First Exercise</u>: (6 points) Determination of the resistance of a resistor

We intend to determine the resistance R of a resistor (R). We thus connect up the circuit represented in figure (1) that is formed of an ideal generator of e.m.f E = 5 V, the resistor (R), an uncharged capacitor (C) of capacitance C = 33 µF and a double switch (K).

A-Charging of the capacitor

- *1*) We intend to charge the capacitor. To what position, 1 or 2, must then (K) be moved?
- The circuit reaches a steady state after a certain time. Give then the value of the voltage u_{AB} across (C) and that of the voltage across (R).

B-Discharging of the capacitor

- 1) Draw a diagram of the circuit during the discharging of the capacitor and show on it the direction of the current it carries.
- 2) Derive the differential equation in $u_C = u_{AB}$ during the discharging.
- 3) The solution of this differential equation has the form :

Referring to the graph of figure 2, determine the value of R.

Second Exercise: (7 points) Horizontal elastic pendulum

A particle (S) of mass $m_1 = 100$ g can slide, without friction, on a track in a vertical plane, formed of a straight part AB, of length 10 cm, inclined by an angle $\alpha = 30^0$ with the horizontal and a straight horizontal part Bx.

A spring (R), of un-jointed turns and of negligible mass, of free length ℓ_0 and of stiffness k = 10 N/m, is placed horizontally on the part Bx. One end of the spring is fixed to the track at point I and the other end is fixed to a plate (P). (R) has a free length ℓ_0 and (P) is at point O of the horizontal part (figure below). The point O is taken as the origin of abscissas on the axis x'ox.

The particle (S) is released from rest at point A. The horizontal plane containing Bx is taken as a gravitational potential energy reference. Take $g = 10 \text{ m/s}^2$.

A - Motion of the particle between A and O

- 1) Calculate the mechanical energy of the system [(S), Earth] at point A.
- 2) The mechanical energy of the system [(S), Earth] is conserved between the points A and O. Why?
- 3) (S) reaches point O with the velocity $\vec{V_0} = V_0 \vec{i}$. Show that $V_0 = 1$ m/s.

B-Motion of the oscillator in two situations

I – First situation

The plate (P) has a negligible mass.

(S) collides with (P) and sticks to it thus forming a single body [(P), (S)] whose center of mass is G. At the instant $t_0 = 0$, G is at O. The system [(S), (P), spring] forms a horizontal mechanical oscillator. At an instant t, the abscissa of G is x and the algebraic measure of its velocity is v.

- *1*) Write down the expression of the mechanical energy of the system [oscillator, Earth] in terms of m₁, x, v and k.
- 2) Derive the second order differential equation in x that governs the motion of G.
- 3) Deduce the nature of the motion of G and the expression of the period T_1 of this motion in terms of m_1 and k.
- 4) G, leaving O at the instant $t_0 = 0$, passes again through O for the first time at the instant t_1 . Calculate the duration t_1 .

II – Second situation

(P) is replaced by another plate (P') of mass $m_2 = 300$ g placed at O. Considering the initial conditions, (S) reaches (P'), just before collision, with the velocity $\overrightarrow{V_0} = V_0 \vec{i}$ ($V_0 = 1$ m/s). Just after the head-on collision (collinear velocities), (S) and (P') move separately, at the instant $t_0 = 0$, with the velocities $\overrightarrow{V_1}$ and $\overrightarrow{V_2} = V_2 \vec{i}$ respectively where $V_2 = 0.5$ m/s.

- 1) Determine $\overrightarrow{V_1}$.
- 2) Show that the collision is elastic.
- 3) (P') leaves O at the instant $t_0 = 0$ then passes again through point O for the first time at the instant t_2 . We notice that the durations t_1 and t_2 are related by $t_2 > t_1$. Justify.

<u>Third Exercise</u>: (7 points) The radio-isotope polonium ²¹⁰₈₄Po

Given: $1u = 1.66 \times 10^{-27} \text{ kg} = 931.5 \text{ MeV/c}^2$; $1 \text{ MeV} = 1.6 \times 10^{-13} \text{ J}$;

Mass of some nuclei : m(Po) = 209.9829 u; m(Pb) = 205.9745 u; $m(\alpha) = 4.0026 \text{ u}$; $h = 6.63 \times 10^{-34} \text{ J.s}$; $c = 3 \times 10^8 \text{ m/s}$.

A - Decay of polonium 210

The polonium $^{210}_{84}$ Po is an α emitter. The daughter nucleus produced by this decay is the lead $^{A}_{7}$ Pb.

- 1) Determine Z and A specifying the laws used.
- 2) Calculate, in MeV and in J, the energy liberated by this decay.
- 3) The nucleus $^{210}_{84}$ Po is initially at rest. We suppose that the daughter nucleus $^{A}_{Z}$ Pb is obtained at rest and in the fundamental state. Deduce the kinetic energy of the emitted α particle.
- 4) In general, the decay of $^{210}_{84}$ Po is accompanied by the emission of γ radiation.
 - a) Due to what is the emission of γ radiation?
 - **b**) The emitted γ radiation has the wavelength $\lambda = 1.35 \times 10^{-12}$ m in vacuum. Using the conservation of total energy, determine the kinetic energy of the emitted α particle.

B – Radioactive period of polonium 210

The adjacent figure shows the curve representing the variations with time t of the number N of the nuclei present in the radioactive sample ${}^{210}_{84}$ Po, this number being called N₀ at the instant t₀ = 0. The same figure shows also the tangent to that curve at the instant t₁ = 263 days.

 Write down the expression of N as a function of t and specify what does each term represent.

2) The activity of the radioactive sample is given by: A = $-\frac{dN}{dt}$.

- *a*) Define the activity A.
- *b*) Using the given on the figure above, determine the activity A of the sample at the instant $t_1 = 263$ days.
- *3)* Deduce the value of the radioactive constant and the value of the half-life (period) of polonium 210.

الدورة العادية للعام 2010	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ساعتان	مشروع معيار التصحيح

First exercise (6 points)

Part of the Q	Answer	Mark
A.1	We have to move the switch (K) to position 1.	
A.2	After certain time \implies uc = E = 5 V, u _R = 0	
B.1		
B.2	$q = C u_{c}, \text{ therefore } i = -C \frac{du_{C}}{dt}$ $u_{AB} = Ri = u_{c} \implies -Ri + u_{c} = 0$ $RC \frac{du_{C}}{dt} + u_{c} = 0.$	
B.3.a	$\frac{d\mathbf{u}_{\rm C}}{dt} = -\frac{1}{\tau} \operatorname{E} \mathbf{e}^{\frac{-t}{\tau}} - \operatorname{RC} \frac{1}{\tau} \operatorname{E} \mathbf{e}^{\frac{-t}{\tau}} + \operatorname{E} \mathbf{e}^{\frac{-t}{\tau}} = 0$ $\Rightarrow \tau = \operatorname{RC}$	
B.3.b	$t_1 = \tau \implies uc = 1.85 \text{ V}.$	
B.3.c	$t_{min} = 5 \tau$	
B.4.d	$\ell \mathbf{n} \mathbf{u}_{\mathbf{c}} = -\frac{t}{\tau} + \ell \mathbf{n} \mathbf{E}$	
B.3.e	Slope = $-\frac{1}{\tau} = -\frac{1.61}{0.053}$ but = RC \Rightarrow R = $\frac{\tau}{\tau} = 10^3 \Omega$.	
	but $= \text{RC} \implies \text{R} = \frac{1}{C} = 10^3 \Omega.$	

Part of	Answer	Mark
the Q		What K
A.1	$ME_A = KE_A + GPE_A = 0 + m_1gh = m_1g(AB\sin\alpha) = 0.1 \times 10 \times 0.1 \times 0.5$	
	$ME_{A} = 0.05 J$	
A.2	friction is negligible	
A.3	$ME_A = ME_O = GPE_O + KE_O = 0 + \frac{1}{2}m_1V^2 \implies V = 1 \text{ m/s.}$	
B.I.1	$ME = \frac{1}{2} m_1 v^2 + \frac{1}{2} kx^2$	
B.I.2	$\frac{dME}{dt} = 0 = m_1 vx'' + kxv \implies x'' + \frac{k}{m}x = 0$	
B.I.3	The form is $x'' + \omega_0^2 x = 0$ then Simple harmonic motion	
	$\omega_1 = \sqrt{\frac{k}{m_1}} \implies T_1 = 2\pi \sqrt{\frac{m_1}{k}}.$	
B.I.4	$t_1 = \frac{T_1}{2} = \pi \sqrt{\frac{m_1}{k}} = \pi \sqrt{\frac{0.1}{10}} = 0.314 \text{ s}$	
B.II.1	The linear momentum is conserved	
	$m_1 \overrightarrow{V} + \overrightarrow{0} = m_1 \overrightarrow{V_1} + m_2 \overrightarrow{V_2} \Longrightarrow m_1 V = m_1 V_1 + m_2 V_2$	
	$\Rightarrow m_1(V-V_1) = m_2V_2 \Rightarrow V_1 = -0,5 \text{ m/s} \Rightarrow \overrightarrow{V_1} = -0,5 \text{ i}$	
B.II.2	$KE_{Before} = \frac{1}{2} m_1 V_0^2 + 0 = 0.05 J;$	
	$KE_{After} = \frac{1}{2} m_1 V_1^2 + \frac{1}{2} m_2 V_2^2 = 0,05 J$	
	$KE_{Before} = KE_{After} \implies Elastic \ collision$	
B.II.3	The period increases with the mass $\rightarrow T > T \rightarrow t > t$	
D.11.5	The period increases with the mass $\rightarrow 1_2 > 1_1 \rightarrow t_2 > t_1$	

Second exercise (7 points)

Third exercise (7 points)

Part of the O	Answer	Mark
A.1	$^{210}_{84}$ Po \longrightarrow $^{206}_{82}$ Pb $+ {}^{4}_{2}$ He;	
	Using the laws of conservation of charge and mass numbers,	
	Z = 82 and $A = 206$.	
A.2	$E = \Delta mc^2$, $\Delta m = 209.9829 - (4.0026 + 205.9745) = 0.0058 u$,	
	$E = (0.0058) (931.5 \text{MeV/c}^2) c^2 = 5.4 \text{ MeV} = 5.4 \times 1.6 \times 10^{-13} \text{ J}$	
	$E = 8.64 \times 10^{-13} J$	
A.3	$E(\gamma) = 0 \implies KE_{(\alpha)} = E = 5.4 \text{ MeV} = 8.64 \times 10^{-13} \text{ J}$	
A.4.a	If the obtained daughter nucleus is in an excited state and when drops to	
	the ground state it emits γ rays	
A.4.b	$E(\gamma) = hc/\lambda = 1.4733 \times 10^{-13} J = 0.92 MeV;$	
	$m(Po)c^{2} + 0 = m(Pb) c^{2} + 0 + m(\alpha) c^{2} + KE_{(\alpha)} + E(\gamma)$	
	$\Rightarrow E = \Delta mc^2 = KE_{(\alpha)} + E(\gamma) \Rightarrow KE_{\alpha} = 5.4 - 0.92 = 4.48 \text{ MeV}.$	
B.1	$N = N_0 e^{-\lambda t}$, N_0 being respectively the number of nuclei present at $t_0 = 0$	
	and at t , λ is the radioactive constant and t is the time.	
B.2.a.i	Activity is the number of decayed nuclei per unit time.	
B.2.a.ii	A = -(slope of the curve) = $\frac{4 \times 10^{24}}{448.8}$ = 8.91× 10 ²¹ decays /day	
B.2.b	A = λ N then λ = A/N = 0.00495 day ⁻¹ ; T = $\frac{\ln 2}{\lambda}$ = $\frac{0.69}{0.00495}$ = 140 days	