الاورة العادية للعام 2010	امتحاتات الثشهادة الثانويـة العامة الفرع : علوم الحياة	وزارة التربيةّ والتّعليم العالثي المديرية العامـة للتربية دائرة الامتحاتـات
الرقم: الاسم:	مسابقة في مادة الفيزياء المدة ساعتان	

This exam is formed of three exercises in three pages.

The use of non-programmable calculators is recommended.

First Exercise: (6 points) Determination of the resistance of a resistor

We intend to determine the resistance R of a resistor (R). We thus connect up the circuit represented in figure (1) that is formed of an ideal generator of e.m.f $\mathrm{E}=5 \mathrm{~V}$, the resistor (R), an uncharged capacitor (C) of capacitance $\mathrm{C}=33 \mu \mathrm{~F}$ and a double switch (K).

A - Charging of the capacitor

1) We intend to charge the capacitor. To what position, 1 or 2 , must then (K) be moved?
2) The circuit reaches a steady state after a certain time. Give then the value of the voltage $u_{A B}$

Fig. 1 across (C) and that of the voltage across (R).

B - Discharging of the capacitor

1) Draw a diagram of the circuit during the discharging of the capacitor and show on it the direction of the current it carries.
2) Derive the differential equation in $u_{C}=u_{A B}$ during the discharging.
3) The solution of this differential equation has the form :

$$
u_{C}=E e^{-\frac{t}{\tau}}\left(u_{C} \text { in } V, t \text { in } s\right)
$$

where τ is a constant.
a) Determine the expression of τ in terms of R and C.
b) Determine the value of u_{C} at the instant $\mathrm{t}_{1}=\tau$.
c) Give, in terms of τ, the minimum duration needed at the end of which the capacitor is practically totally discharged.
d) Derive the expression of $\ell \mathrm{u}_{\mathrm{C}}$, the natural logarithm of u_{C}, in terms of E, τ and t.
$\boldsymbol{e})$ The diagram of figure 2 represents the variation of $\ell n u_{C}$ as a function of
 time.
Referring to the graph of figure 2, determine the value of R.

Second Exercise: (7 points) Horizontal elastic pendulum

A particle (S) of mass $\mathrm{m}_{1}=100 \mathrm{~g}$ can slide, without friction, on a track in a vertical plane, formed of a straight part AB , of length 10 cm , inclined by an angle $\alpha=30^{\circ}$ with the horizontal and a straight horizontal part Bx.
A spring (R), of un-jointed turns and of negligible mass, of free length ℓ_{0} and of stiffness $\mathrm{k}=10 \mathrm{~N} / \mathrm{m}$, is placed horizontally on the part Bx. One end of the spring is fixed to the track at point I and the other end is fixed to a plate (P). (R) has a free length ℓ_{0} and (P) is at point O of the horizontal part (figure below). The point O is taken as the origin of abscissas on the axis x'ox.

The particle (S) is released from rest at point A. The horizontal plane containing Bx is taken as a gravitational potential energy reference. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

A - Motion of the particle between A and O

1) Calculate the mechanical energy of the system [(S), Earth] at point A.
2) The mechanical energy of the system [(S), Earth] is conserved between the points A and O. Why?
3) (S) reaches point O with the velocity $\overrightarrow{V_{0}}=V_{0} \vec{i}$. Show that $V_{0}=1 \mathrm{~m} / \mathrm{s}$.

B - Motion of the oscillator in two situations

I - First situation

The plate (P) has a negligible mass.
(S) collides with (P) and sticks to it thus forming a single body $[(\mathrm{P}),(\mathrm{S})]$ whose center of mass is G . At the instant $\mathrm{t}_{0}=0, \mathrm{G}$ is at O . The system [(S), (P), spring] forms a horizontal mechanical oscillator. At an instant t , the abscissa of G is x and the algebraic measure of its velocity is v .

1) Write down the expression of the mechanical energy of the system [oscillator, Earth] in terms of $\mathrm{m}_{1}, \mathrm{x}, \mathrm{v}$ and k .
2) Derive the second order differential equation in x that governs the motion of G.
3) Deduce the nature of the motion of G and the expression of the period T_{1} of this motion in terms of m_{1} and k .
4) G, leaving O at the instant $t_{0}=0$, passes again through O for the first time at the instant t_{1}. Calculate the duration t_{1}.

II - Second situation

(P) is replaced by another plate $\left(\mathrm{P}^{\prime}\right)$ of mass $\mathrm{m}_{2}=300 \mathrm{~g}$ placed at O . Considering the initial conditions, (S) reaches (P'), just before collision, with the velocity $\overrightarrow{V_{0}}=V_{0} \vec{i}\left(V_{0}=1 \mathrm{~m} / \mathrm{s}\right)$. Just after the head-on collision (collinear velocities), (S) and (P) move separately, at the instant $t_{0}=0$, with the velocities \vec{V}_{1} and $\overrightarrow{V_{2}}=V_{2} \vec{i}$ respectively where $V_{2}=0.5 \mathrm{~m} / \mathrm{s}$.

1) Determine $\overrightarrow{V_{1}}$.
2) Show that the collision is elastic.
3) (P^{\prime}) leaves O at the instant $t_{0}=0$ then passes again through point O for the first time at the instant t_{2}. We notice that the durations t_{1} and t_{2} are related by $t_{2}>t_{1}$. Justify.

Third Exercise: (7 points) The radio-isotope polonium ${ }_{84}^{210} \mathrm{Po}$

Given: $1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV} / \mathrm{c}^{2} ; ~ 1 \mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J}$;
Mass of some nuclei : $\mathrm{m}(\mathrm{Po})=209.9829 \mathrm{u} ; \mathrm{m}(\mathrm{Pb})=205.9745 \mathrm{u} ; \mathrm{m}(\alpha)=4.0026 \mathrm{u}$;

$$
\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s} ; \quad \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} .
$$

A - Decay of polonium 210

The polonium ${ }_{84}^{210} \mathrm{Po}$ is an α emitter. The daughter nucleus produced by this decay is the lead ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{Pb}$.

1) Determine Z and A specifying the laws used.
2) Calculate, in MeV and in J , the energy liberated by this decay.
3) The nucleus ${ }_{84}^{210} \mathrm{Po}$ is initially at rest. We suppose that the daughter nucleus ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{Pb}$ is obtained at rest and in the fundamental state. Deduce the kinetic energy of the emitted α particle.
4) In general, the decay of ${ }_{84}^{210} \mathrm{Po}$ is accompanied by the emission of γ radiation.
a) Due to what is the emission of γ radiation?
b) The emitted γ radiation has the wavelength $\lambda=1.35 \times 10^{-12} \mathrm{~m}$ in vacuum. Using the conservation of total energy, determine the kinetic energy of the emitted α particle.

B - Radioactive period of polonium 210

The adjacent figure shows the curve representing the variations with time t of the number N of the nuclei present in the radioactive sample ${ }_{84}^{210} \mathrm{Po}$, this number being called N_{0} at the instant $\mathrm{t}_{0}=0$. The same figure shows also the tangent to that curve at the instant $t_{1}=263$ days.

1) Write down the expression of N as a function of t and specify what does each term represent.

2) The activity of the radioactive sample is given by: $A=-\frac{d N}{d t}$.
a) Define the activity A.
b) Using the given on the figure above, determine the activity A of the sample at the instant $t_{1}=263$ days.
3) Deduce the value of the radioactive constant and the value of the half-life (period) of polonium 210.

الدورة العادية	امتحانـات الشهـادة الثانويـة العامـة الفرع : علوم الحياة	وزارة اللتربيةّ والتنعليم العالثي المديرية العامـة للتربية دائرة الامتحانـات
الالاسم:	مسابقة في مـادة الفيزياء المدة ساعتان	مشروع مـيار التصيح

First exercise (6 points)

Second exercise (7 points)

Part of the \mathbf{Q}	Answer	Mark
A. 1	$\begin{aligned} & \mathrm{ME}_{\mathrm{A}}=\mathrm{KE}_{\mathrm{A}}+\mathrm{GPE}_{\mathrm{A}}=0+\mathrm{m}_{1} \mathrm{gh}=\mathrm{m}_{1} \mathrm{~g}(\mathrm{AB} \sin \alpha)=0.1 \times 10 \times 0.1 \times 0.5 \\ & \mathrm{ME}_{\mathrm{A}}=0.05 \mathrm{~J} \end{aligned}$	
A. 2	friction is negligible	
A. 3	$\mathrm{ME}_{\mathrm{A}}=\mathrm{ME}_{\mathrm{O}}=\mathrm{GPE}_{\mathrm{O}}+\mathrm{KE}_{\mathrm{O}}=0+1 / 2 \mathrm{~m}_{1} \mathrm{~V}^{2} \Rightarrow \mathrm{~V}=1 \mathrm{~m} / \mathrm{s}$.	
B.I. 1	$\mathrm{ME}=1 / 2 \mathrm{~m}_{1} \mathrm{v}^{2}+1 / 2 \mathrm{kx}^{2}$	
B.I. 2	$\frac{\mathrm{dME}}{\mathrm{dt}}=0=\mathrm{m}_{1} \mathrm{vx}{ }^{\prime \prime}+\mathrm{kxv} \Rightarrow \mathrm{x}^{\prime \prime}+\frac{\mathrm{k}}{\mathrm{~m}} \mathrm{x}=0$	
B.I. 3	The form is $x^{\prime \prime}+\omega_{0}^{2} x=0$ then Simple harmonic motion $\omega_{1}=\sqrt{\frac{\mathrm{k}}{\mathrm{~m}_{1}}} \Rightarrow \mathrm{~T}_{1}=2 \pi \sqrt{\frac{\mathrm{~m}_{1}}{\mathrm{k}}} .$	
B.I. 4	$\mathrm{t}_{1}=\frac{\mathrm{T}_{1}}{2}=\pi \sqrt{\frac{\mathrm{m}_{1}}{\mathrm{k}}}=\pi \sqrt{\frac{0.1}{10}}=0.314 \mathrm{~s}$	
B.II. 1	The linear momentum is conserved $\begin{aligned} & \mathrm{m}_{1} \overrightarrow{\mathrm{~V}}+\overrightarrow{0}=\mathrm{m}_{1} \overrightarrow{\mathrm{~V}_{1}}+\mathrm{m}_{2} \overrightarrow{\mathrm{~V}_{2}} \Rightarrow \mathrm{~m}_{1} \mathrm{~V}=\mathrm{m}_{1} \mathrm{~V}_{1}+\mathrm{m}_{2} \mathrm{~V}_{2} \\ & \Rightarrow \mathrm{~m}_{1}\left(\mathrm{~V}-\mathrm{V}_{1}\right)=\mathrm{m}_{2} \mathrm{~V}_{2} \Rightarrow \mathrm{~V}_{1}=-0,5 \mathrm{~m} / \mathrm{s} \Rightarrow \overrightarrow{\mathrm{~V}_{1}}=-0,5 \overrightarrow{\mathrm{i}} \end{aligned}$	
B.II. 2	$\begin{aligned} & \mathrm{KE}_{\text {Before }}=1 / 2 \mathrm{~m}_{1} \mathrm{~V}_{0}{ }^{2}+0=0,05 \mathrm{~J} ; \\ & \mathrm{KE}_{\text {After }}=1 / 2 \mathrm{~m}_{1} \mathrm{~V}_{1}^{2}+1 / 2 \mathrm{~m}_{2} \mathrm{~V}_{2}^{2}=0,05 \mathrm{~J} \\ & \mathrm{KE}_{\text {Before }}=\mathrm{KE}_{\text {After }} \Rightarrow \text { Elastic collision } \end{aligned}$	
B.II. 3	The period increases with the mass $\Rightarrow \mathrm{T}_{2}>\mathrm{T}_{1} \Rightarrow \mathrm{t}_{2}>\mathrm{t}_{1}$	

Third exercise (7 points)

Part of the \mathbf{Q}	Answer	Mark
A. 1	${ }_{84}^{210} \mathrm{Po} \longrightarrow{ }_{82}^{206} \mathrm{~Pb} \quad+{ }_{2}^{4} \mathrm{He} \text {; }$ Using the laws of conservation of charge and mass numbers, $\mathrm{Z}=82$ and $\mathrm{A}=206$.	
A. 2	$\begin{aligned} & \mathrm{E}=\Delta \mathrm{mc}^{2}, \Delta \mathrm{~m}=209.9829-(4.0026+205.9745)=0.0058 \mathrm{u}, \ldots \\ & \mathrm{E}=(0.0058)\left(931.5 \mathrm{MeV} / \mathrm{c}^{2}\right) \mathrm{c}^{2}=5.4 \mathrm{MeV}=5.4 \times 1.6 \times 10^{-13} \mathrm{~J} \\ & \mathrm{E}=8.64 \times 10^{-13} \mathrm{~J} \end{aligned}$	
A. 3	$\mathrm{E}(\gamma)=0 \Rightarrow \mathrm{KE}_{(\alpha)}=\mathrm{E}=5.4 \mathrm{MeV}=8.64 \times 10^{-13} \mathrm{~J}$	
A.4.a	If the obtained daughter nucleus is in an excited state and when drops to the ground state it emits γ rays	
A.4.b	$\begin{aligned} & \mathrm{E}(\gamma)=\mathrm{hc} / \lambda=1.4733 \times 10^{-13} \mathrm{~J}=0.92 \mathrm{MeV} ; \\ & \mathrm{m}(\mathrm{Po}) \mathrm{c}^{2}+0=\mathrm{m}(\mathrm{~Pb}) \mathrm{c}^{2}+0+\mathrm{m}\left(_{\alpha}\right) \mathrm{c}^{2}+\mathrm{KE}_{(\alpha)}+\mathrm{E}(\gamma) \\ & \Rightarrow \mathrm{E}=\Delta \mathrm{mc}^{2}=\mathrm{KE}_{(\alpha)}+\mathrm{E}(\gamma) \Rightarrow \mathrm{KE}_{\alpha}=5.4-0.92=4.48 \mathrm{MeV} . \end{aligned}$	
B. 1	$\mathrm{N}=\mathrm{N}_{\mathrm{o}} \mathrm{e}^{-\lambda t}, \mathrm{~N}_{\mathrm{o}}$ being respectively the number of nuclei present at $\mathrm{t}_{0}=0$ and at t, λ is the radioactive constant and t is the time.	
B.2.a.i	Activity is the number of decayed nuclei per unit time.	
B.2.a.ii	$A=-(\text { slope of the curve })=\frac{4 \times 10^{24}}{448.8}=8.91 \times 10^{21} \text { decays } / \text { day }$	
B.2.b	$\mathrm{A}=\lambda \mathrm{N} \text { then } \lambda=\mathrm{A} / \mathrm{N}=0.00495 \mathrm{day}^{-1} ; \mathrm{T}=\frac{\ln 2}{\lambda}=\frac{0.69}{0.00495}=140 \text { days }$	

