لورة سنة 2003 الاستئنائية	امتحـاتات شهادة الثانوية العامة فرع علوم الحياة	وزارة التربية والتُليم العلالي \|المديرية العامة للتريبية دالئرة الامتحاتات
الرقمد :	مسابقة في الفيزياء المدة : ساعـتان	

This exam is formed of three obligatory exercises in three pages numbered from 1 to 3.
 The use of non-programmable calculators is allowed.

First Exercise (6 points) Graphical study of energy exchange

Consider an inclined plane that makes an angle α with the horizontal ($\sin \alpha=0.2$) and a marble (B) of mass $m=100 \mathrm{~g}$, taken as a particle. We intend to study the energy exchange between the system (marble,
 Earth) and the surroundings.
To do that, the marble (B) is given, at the instant $t_{0}=0$, the velocity $\vec{V}_{o}=V_{o} \vec{i}$ along the line of greatest slope OX. Given $V_{o}=4 \mathrm{~m} . \mathrm{s}^{-1}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.
The horizontal plane through point O is taken as the gravitational potential energy reference.
A- The forces of friction are supposed negligible.
1- Determine the value of the mechanical energy M.E of the system (marble, Earth).
2- At the instant t, the marble passes through a point M of abscissa $O M=x$. Determine, as a function of x, the expression of the gravitational potential energy P. E_{g} of the system (marble, Earth) when the marble passes through M.
3-a) Trace, on the same system of axes, the curves representing the variations of the energies M.E and P.E. E_{g} as a function of x.
Scale: - on the axis of abscissas: 1 cm represents 1 m ;

- on the axis of energy: 1 cm represents 0.2 J .
b) Determine, using the graph, the speed of the marble for $x=3 \mathrm{~m}$.
c) Determine, using the graph, the value of x_{m} of x for which the speed of (B) is zero.

B-1. In reality, the speed of the marble becomes zero at a point of abscissa $x=3 \mathrm{~m}$. The forces of friction are no longer negligible. Calculate then the work done by the forces of friction between $x=0$ and $x=3 \mathrm{~m}$.
2. The system (marble, Earth) thus exchanges energy with its surroundings. In what form and by how much?

Second Exercise (7 points) Responseof an RC series circuit

The object of this exercise is to distinguish the response of an RC series circuit when we apply acrossits terminals a constant voltage, from its response when it carries a constant current.

A- Case of a constant voltage

The circuit of the adjacent figure allows us to charge the capacitor of capacitance $\mathrm{C}=10 \mu \mathrm{~F}$ through a resistor of resistance $\mathrm{R}=100 \mathrm{k} \Omega$, under a constant voltage $\mathrm{E}=9 \mathrm{~V}$. Take the instant $\mathrm{t}=0$ the instant when the switch K is closed.
1- Denote by $u_{C}=u_{M N}$, the instantaneous value of the voltage across the terminals of the capacitor.
a- Show that the differential equation in u_{C} is of the form:

$$
\mathrm{u}_{\mathrm{C}}+\mathrm{RC} \frac{\mathrm{~d} \mathrm{u}_{\mathrm{C}}}{\mathrm{dt}}=\mathrm{E}
$$

b- Knowing that the solution of this equation has the form: $u_{C}=A\left(1-e^{-\frac{t}{\tau}}\right)$ determine A and τ.
c-Trace the shape of the curve that gives the variation of u_{C} as a function of time.
2- a- Determine the expression of the voltage $u_{R}=u_{A M}$ as a function of time.
b- Trace, on the same system of axes, the shape of the curve giving the variation of u_{R} as a function of time.
3 - What is the value of the interval if time t_{A} at the end of which u_{C} becomes practically 9 V ?

B- Case of a constant current

The preceding capacitor being discharged is to be recharged through the same resistor by a generator giving a constant current $\mathrm{I}_{0}=0.1 \mathrm{~mA}$.

1-a-Show that the charge q can be written, in SI, in the form $q=10^{4} \times \mathrm{t}$.
$b-$ The voltage $u_{R}=u_{A M}$ across the resistor remains constant. Determine its value.
c- Trace the shape of the graph representing u_{R}.
2-a- Determine the expression of the voltage $u_{C}=u_{M N}$ as a function of time.
b- Trace the shape of the graph representing u_{C}.
c- Determine the time interval t_{B} needed for the voltage u_{C} to attain the value 9 V .

C- Conclusions

1- Using the preceding graphs, specify the case where the voltage across the capacitor attains, in the steady state, a limiting value.
2- A camera is equipped with a flash that is formed of the preceding RC circuit. We intend to take the largest number of photos in a given time interval. To do so we have to charge the capacitor. Which one of the two preceding charging modes is more convenient? Why?

Third exercise ($61 / 2$ points) The isotope ${ }_{3}^{7} \mathrm{Li}$ of lithium

As all the other chemical elements, the isotope ${ }_{3}^{7} \mathrm{Li}$ has properties that distinguish it from other chemical elements.
The object of this exercise is to show evidence of some properties of the isotope ${ }_{3}^{7} \mathrm{Li}$.

A- Emission spectrum of the lithium atom

The adjacent figure represents the energy levels of the lithium atom.
1-Calculate, in joule, the energy $\left(\mathrm{E}_{1}\right)$ of the atom when it is in the ground state and (E_{5}) when it is in
the fifth state.
2-During the downward transition (de-excitation) from different energy levels to the ground level, the
lithium atom emits some radiations.
a- Calculate the highest and the lowest frequency of the emitted radiations.
b- The corresponding emission spectrum is discontinuous. Why?
3- The lithium atom, being in the ground state, captures:
a- a photon whose associated radiation has a wavelength of $\lambda=319.9 \mathrm{~nm}$. Show that the atom absorbs this photon. In what level would it be?
b- a photon of energy 6.02 eV . An electron is thus liberated. Calculate, in eV , the kinetic energy of that electron.

$B-$ Nuclear reaction

A nucleus ${ }_{Z}^{A} X$, at rest, is bombarded by a proton carrying an energy of 0.65 MeV ; we obtain two α particles.

1- Is this nuclear reaction spontaneous or provoked? Justify your answer.
2- Determine the values of Z and A by applying the convenient conservation laws. Identify the nucleus X.

3- Calculate the mass defect due to this reaction and deduce the corresponding energy liberated.
4- Knowing that the two obtained α particles have the same kinetic energy E. Calculate E.
Given: $\quad \mathrm{h}=6.62 \times 10^{-34} \mathrm{~J} \times \mathrm{s} ; \quad \mathrm{c}=3 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1} ; \quad 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$;

$$
1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2}
$$

mass of the nucleus of lithium: $\mathrm{m}(\mathrm{Li})=7.01435 \mathrm{u}$;
mass of the a particle: $\mathrm{m}(\alpha)=4.00150 \mathrm{u}$;
mass of a proton: $\mathrm{m}_{\mathrm{p}}=1.00727 \mathrm{u}$.

اسس التصحيح لدورة 2003 الاستثّنائية		
Question I (6.5 points)		
A-1.	Friction being negligible, the mechanical energy of the system: $E=M E_{O}=K E_{O}+G P E_{O}=0.8+0=0.8 \mathrm{~J}$	1
A-2.	$\begin{aligned} & G P E=m g x \sin \alpha \\ & G P E=0.1 \times 10 \times x \times 0.2=0.2 x \quad(x \text { in } m, \text { and } G P E \text { in } J) \end{aligned}$	0.75
A- 3.a)		$\begin{aligned} & \hline 0.5 \\ & 0.5 \\ & 0.25 \\ & 0.25 \end{aligned}$
A3.b)	$\begin{aligned} K E=M E-G P E & =0.8 J-0.6 J=0.2 J \\ & \text { So, } K E=\frac{1}{2} m v^{2}=0.2 J ; \text { thus, } v=2 \mathrm{~m} / \mathrm{s} \end{aligned}$	1
$\begin{aligned} & \text { A- } \\ & \text { 3.c) } \end{aligned}$	$K E=0 ; \text { so } M E=G P E,$ Graphically the abscissa is $x_{m}=4 \mathrm{~m}$.	0.5
B-1.	With friction, the speed becomes zero for $3 m$, the mechanical energy is: $M E_{2}=K E_{2}+G P E_{2}=0+m g x \sin \alpha=0.6 \mathrm{~J} .$ $W_{\vec{f}}=\Delta(M E)=M E_{2}-M E_{O}=0.6 \mathrm{~J}-0.8 \mathrm{~J}=-0.2 \mathrm{~J}$	1
B-2.	The energy exchanged with the surroundings is converted into thermal energy that appears in the form of heat.	0.5

اسس التصحيح لاورة 2003 الاستثنّانية		
Question II (07 points)		
$\begin{aligned} & \text { A- } \\ & \text { 1.a) } \end{aligned}$	Law of addition of voltages $u_{A B}=u_{A M}+u_{M N}$, so $E=u_{C}+u_{R}$; Thus, $E=u_{C}+R C \frac{d u_{C}}{d t}$.	0.75
$\begin{gathered} \text { A- } \\ \text { 1.b) } \end{gathered}$	We have $u_{C}=A\left(1-e^{-\frac{t}{\tau}}\right)$, so $\frac{d u_{C}}{d t}=\frac{A}{\tau} e^{-\frac{t}{\tau}}$; $E=A+e^{-\frac{t}{\tau}}\left(1-\frac{R C}{\tau}\right) .$ Then $A=E$ and $\tau=R C$	1
A- 1.c)	Graph of $u_{C}(t)$.	0.5
$\begin{aligned} & \text { A- } \\ & \text { 2.a) } \end{aligned}$	$u_{R}=R i=R C \frac{d u_{C}}{d t}=E e^{-\frac{t}{\tau}}$	0.25
$\begin{aligned} & \text { A- } \\ & \text { 2.b) } \end{aligned}$	Graph of $u_{R}(t)$.	0.5
A2.c)	$t_{A}=5 R C=5 \times\left(100 \times 10^{3}\right) \times\left(10 \times 10^{-6}\right)=5 \mathrm{~s}$.	0.5
$\begin{aligned} & \hline \text { B- } \\ & \text { 1.a) } \end{aligned}$	So, $q=I_{0} t+q_{0}$; Thus, $q=10^{-4} t$ where t in $s \& q$ in C.	0.75
$\begin{aligned} & \hline \text { B- } \\ & \text { 1.b) } \end{aligned}$	$u_{R}=R I_{0}=10^{5} \times 10^{-4}=10 \mathrm{~V}$.	0.25
B- 1.c)	Sketch of the voltage $u_{R}(t)$	0.5
$\begin{aligned} & \hline \text { B- } \\ & \text { 2.a) } \end{aligned}$	Thus, $u_{C}=\frac{10^{-4}}{10^{-5}} t=10 t\left(\right.$ where t in $s \& u_{C}$ in $\left.V\right)$	0.5
$\begin{aligned} & \text { B- } \\ & \text { 2.b) } \end{aligned}$	The curve representing u_{C} is a straight line passing through origin.	0.25
$\begin{aligned} & \text { B- } \\ & \text { 2.c) } \end{aligned}$	$q=10^{-4} t, \text { thus } t_{B}=\frac{9 \times 10^{-5}}{10^{-4}}=0.9 \mathrm{~s}$	0.5
C-1.	Case B	0.25
C-2.	Mode B better, it charges faster	0.5

اسس التصيح للورة 2003 الاستثنّائية		
Question III (6.5 points)		
A-1.	$\begin{aligned} & E_{1}=-5.39 \mathrm{eV}=-8.624 \times 10^{-19} \mathrm{~J} \\ & \quad \text { and } E_{6}=-1.664 \times 10^{-19} \mathrm{~J} \end{aligned}$	$\begin{gathered} 0.5 \\ 0.25 \end{gathered}$
$\begin{aligned} & \text { A- } \\ & \text { 2.a) } \end{aligned}$	To the ground state $n=1$ from the nearest energy level $n=2$: $h v_{\min }=E_{2}-E_{1} \text {, then } v_{\min }=4.5 \times 10^{14} \mathrm{~Hz} .$ From $n=\infty$ to the ground state: $h v_{\max }=E_{\infty}-E_{1}, \text { then } v_{\max }=1.30 \times 10^{15} \mathrm{~Hz}$	$\begin{aligned} & 0.75 \\ & 0.75 \end{aligned}$
$\begin{aligned} & \hline \text { A- } \\ & \text { 2.b) } \end{aligned}$	The energy levels are quantified.	0.5
A- 3.a)	$E_{p h}=\frac{h c}{\lambda}=3.880 \mathrm{eV}$ $E_{p h}+E_{1}=E_{5}$, to the $5^{\text {th }}$ energy level.	$\begin{gathered} 0.5 \\ 0.25 \end{gathered}$
$\begin{aligned} & \text { A- } \\ & \text { 3.b) } \end{aligned}$	The ionization energy: $W_{0}=E_{\infty}-E_{1}=5.390 \mathrm{eV}$; $E_{p h}>W_{0}$ $K E=E_{P h}-W_{0}=0.630 \mathrm{eV}$	
B-1.	The intervention of a proton (external agent).	0.25
B-2.	Conservation of mass number: $A=7$; Conservation of charge number: $Z=3$; The nucleus is the lithium ${ }_{3}^{7} L i$.	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.25 \end{aligned}$
B-3.	The mass defect that accompanies this nuclear reaction: $m_{\ell}=0.01862 u ;$ The energy liberated is $E_{\ell}=m_{\ell} c^{2}=0.01862 \times 931.5 \mathrm{MeV}=17.34 \mathrm{MeV}$.	0.5
B-4.	Conservation of energy: $E_{\ell}=m_{\ell} c^{2}=2 K E_{\alpha}-\left(K E_{p}+K E_{L i}\right)$; Then, $K E_{\alpha} \approx 9 \mathrm{MeV}$	0.5

