دورة سنة 2003 العايدة	امتحانات شهادة الثانوية العامة فرع علوم الحياة	ولرزارة التربية وبة والتُعليمي العالي دانيرة الامتحاتات
اللاسم : :	مسابقة في الفيزياء المدة : ساعتان	

This exam is formed of three obligatory exercises in three pages numbered from 1 to 3. The use of non-programmable calculators is allowed.

First Exercise ($61 / 2$ points) Determination of the force constant of a spring

In order to deter mine the force constant k of a spring (R) of un-jointed turns, we consider:

- a frictionle ss track ABC found in a vertical plane,
- a spring (R) having one end fixed to a support C and its other end connected to a solid (S_{2}) of mass m_{2} of negli gible dimen sions.
- a solid $\left(S_{1}\right)$ of mass $m_{1}=0.1 \mathrm{~kg}$ and of negli gible dimen sions held at

A at height $\mathrm{h}=0.8 \mathrm{~m}$ above the horizontal plane containing BC.

The horizontal plane containing BC is taken as the gravitational potential energy reference. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
1- $\left(S_{1}\right)$, released from rest at A, reaches $\left(S_{2}\right)$ with a velocity \vec{V}_{1}. Show that the magnitude of \vec{V}_{1} is $\mathrm{V}_{1}=4 \mathrm{~m} / \mathrm{s}$.
2- $\left(S_{1}\right)$, collides with $\left(S_{2}\right)$ and sticks to it, thus forming a particle (S). Determine, in terms of m_{2}, the expression of V_{0} the magnitude of the velocity \vec{V}_{0} of (S) just after the impact.
3- The system $[(S),(R)]$ forms a horizontal elastic pendulu m, (S) oscillating around its equilibrium position at O.
a- Determine the differential equation that describes the motion of the oscillator. Deduce the expression of its proper period T_{0}.
b-Figure (2) represents the variation of the algebraic value of the velocity of (S) as a function of time.
The origin of time corre sponds to the instant when the velocity of (S) is \vec{V}_{o}.
i- Give the value V_{o} of \vec{V}_{o}.
ii- Deduce the value of m_{2}.

iii- Give the value of T_{o}.
iv- Calculate k .

Second Exercise (7 points) Role and characteristics of a coil

Consider a coil (B) that bears the following indications: $\mathrm{L}=65 \mathrm{mH}$ and $\mathrm{r}=20 \Omega$.

A- Role of a coil

In order to show the role of a coil, we connect the coil across a generat or G_{1}.
The variation of the current i carried by the coil as a function of time is represe nted in figure (1).
1-a-Give, in terms of L and i, the literal expression of the induced electromotive force e produced across the coil.

b- Determine the value of e in each of the following time intervals: [$0 ; 1 \mathrm{~ms}$], [$1 \mathrm{~ms} ; 3 \mathrm{~ms}$], [$3 \mathrm{~ms} ; 4 \mathrm{~ms}$].
2- In what time interval would the coil act as a generator? Justify your answer.

B-Characteristics of the coil

In order to verify the values of L and r, we perform the two following experiments:

I- First experiment: The coil (B), a resistor of resistance $\mathrm{R}=20 \Omega$ and an ammeter of negligible resistance are connected in series across a generator $\left(\mathrm{G}_{2}\right)$ of electromotive force $\mathrm{E}=4 \mathrm{~V}$ and of negligible internal resistance (figure 2). After a certain time, the ammeter reads $\mathrm{I}=0.1 \mathrm{~A}$. Deduce the value of r.

II-Second experiment: The ammeter is removed and G_{2} is replaced by a generat or G_{3} delivering an alternating sinusoidal voltage.
1- Redraw figure (2) and show on it the connections of an oscilloscope that allows to display, on the channel (1), the voltage v_{g} across the generator and, on channel (2), the voltage v_{R} across the resistor.
2- The voltages displayed on the oscillo scope are represented on figure (3).
Given: vertical sensiti vity on both channels: 2 V/division.
horizontal sensiti vity: $1 \mathrm{~ms} /$ division.
a- The waveform (1) represents vg . Why?
b- The voltage across the generator has the form:

$$
\mathrm{v}_{\mathrm{g}}=\mathrm{V}_{\mathrm{m}} \cos \omega \mathrm{t} . \text { Determine } \mathrm{U}_{\mathrm{rn}} \text { and } \omega .
$$

$c-$ Determine the phase difference φ between v_{g} and v_{R}.
d- Determine the expression of the instantaneous current i carried by the
 circuit.
e- Using the law of addition of voltages at an instant t, and using a particular value of t, deduce the value of the inductance L.

III- Compare the values found for r and L , with those indicated on the coil.

Third exercise ($61 / 2$ points) The two aspects of light

To show evidence of the two aspects of light, we perform the two following experiments:

A- First experiment

We cover a metallic plate by a thin layer of cesium whose threshold wavelength is $\lambda_{o}=670 \mathrm{~nm}$. Then we illuminate it with a monochromatic radiation of wavelength in vacuum $\lambda=480 \mathrm{~nm}$. A convenient apparatus is placed near the plate in order to detect the electrons emitted by the illumin ated plate.
1- This emission of electrons by the plate shows evidence of an effect. What is that effect?
2- What does the term "threshold wavelength" represent?
3- Calculate, in J and eV , the extraction energy (work function) of the cesium layer.
4- What is the form of energy carried by an electron emitted by the plate? Give the maximum value of this energy.
Given: Planck 's constant: $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s}$;
speed of light in vacuum: $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$;
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$.

B- Second experiment

The two thin slits of Young's apparatus, separated by a distance a, are illuminated with a laser light whose wavelength in vacuum is $\lambda=480 \mathrm{~nm}$. The distance between the screen of observation and the plane of the slits is $\mathrm{D}=2 \mathrm{~m}$.
1- Draw a diagram of the apparatus and show on it the region of the interference.
2- The conditions to obtain the phenomen on of interference on the screen are satisfied. Why?
3- Due to what is the phenomenon of interference?
4- a- Describe the aspect of the region of interference observed on the screen.
b- We count 11 bright fringes. The distance between the centers of the farthest fringes is $1=9.5$ mm . What do we call the distance between the centers of two consecutive bright fringes? Calculate its value and deduce the value of a.
C- The two experiments show evidence of two aspects of light. Specify the aspect shown by each experiment.

اسس التصحيح لاورة 2003 العادية		
Question I (07 points)		
1.	Friction being negligible, the mechanical energy of the system [$\left(S_{1}\right)$, Earth] is conserved: $\begin{aligned} K E_{A}+G P E_{A}= & K E_{O}+G P E_{O} . \\ & \text { Thus, } v_{1}=\sqrt{2 g h}=\sqrt{2 \times 10 \times 0.8}=4 \mathrm{~m} / \mathrm{s} \end{aligned}$	1
2.	The linear momentum of the system $\left[\left(S_{1}\right),\left(S_{2}\right)\right]$ is conserved: $\begin{array}{r} \overrightarrow{v_{0}}=\frac{m_{1}}{m_{1}+m_{2}} \overrightarrow{v_{1}} \\ \overrightarrow{v_{0}}=\frac{0.4 \vec{\imath}}{0.1+m_{2}} \text { where } m_{2} \text { in } \mathrm{kg} \& v_{0} \text { in } \mathrm{m} / \mathrm{s} \end{array}$	0.5 0.5
3.a)	$M E=\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2}+\frac{1}{2} k x^{2}$ This mechanical energy is conserved because the forces of friction are negligible: $\frac{d(M E)}{d t}=0 ; \text { we get: } x^{\prime \prime}+\frac{k}{m_{1}+m_{2}} x=0$	0.5 0.5 0.5
3.b)	The differential equation that governs the motion of the solid (S) is of the form $\begin{aligned} & x^{\prime \prime}+\omega_{0}^{2} x=0 ; \omega_{0}=\sqrt{\frac{k}{m_{1}+m_{2}}} \\ & T_{0}=\frac{2 \pi}{\omega_{0}}=2 \pi \sqrt{\frac{m_{1}+m_{2}}{k}} \end{aligned}$	0.5 0.5 0.5 0.5
4.a)	$v_{0}=1 \mathrm{~m} / \mathrm{s}$	0.5
4.b)	$v_{0}=\frac{0.4}{0.1+m_{2}}=1,$ then $m_{2}=0.4 \mathrm{~kg}-0.1 \mathrm{~kg}=0.3 \mathrm{~kg}$.	0.5
4.c)	$T_{0}=1 \mathrm{~s}$.	0.25
4.d)	$\begin{aligned} & T_{0}=2 \pi \sqrt{\frac{m_{1}+m_{2}}{k}} ; \\ & \text { Then } k=\frac{4 \pi^{2}\left(m_{1}+m_{2}\right)}{T_{0}^{2}}=16 \mathrm{~N} / \mathrm{m} \end{aligned}$	0.75

(اسس التصحيح لاورة 2003 العادية		
Question II (07 points)		
$\begin{aligned} & \text { A- } \\ & \text { 1.a) } \end{aligned}$	$e=-L \frac{d i}{d t}$	0.25
$\begin{gathered} \text { A- } \\ \text { 1.b) } \end{gathered}$	For $t \in[0 ; 1 \mathrm{~ms}]$, the current varies linearly; then: $\begin{aligned} & \frac{d i}{d t}=\frac{\Delta i}{\Delta t}=\frac{(0.1-0) A}{(1-0) \times 10^{-3} \mathrm{~S}}=+100 \mathrm{~A} / \mathrm{s} \\ & \quad \text { So }, e=-65 \times 10^{-3} \times 100=-6.5 \mathrm{~V} \end{aligned}$ For $t \in[1 \mathrm{~ms} ; 3 \mathrm{~ms}], e=0 \mathrm{~V}$; For $t \in[3 m s ; 4 m s]$, $\text { So }, e=-65 \times 10^{-3} \times(-100)=+6.5 \mathrm{~V}$	$\begin{aligned} & 0.75 \\ & 0.25 \\ & 0.5 \end{aligned}$
A-2.	If $t \in[3 \mathrm{~ms} ; 4 \mathrm{~ms}]$, the coil acts as a generator since $e=6.5 \mathrm{~V}>0$	0.5
$\begin{gathered} \text { B-I- } \\ 1 . \end{gathered}$	$\begin{aligned} & E=r I+R I ; 4=r \times 0.1+20 \times 0.1 \\ & \qquad \text { thus } r=\left(\frac{4-2}{0.1}\right)=20 \Omega \end{aligned}$	0.5
$\begin{gathered} \hline \text { B-II- } \\ 1 . \end{gathered}$	Diagram	0.5
$\begin{aligned} & \text { B-II- } \\ & \text { 2.a) } \end{aligned}$	Due to the inductive effect of the coil present in the circuit, the voltage across the generator u_{G} should lead the current whose image is u_{R}.	0.5
$\begin{aligned} & \text { B-II- } \\ & \text { 2.b) } \end{aligned}$	$U_{m}=S_{v_{1}} \times y_{1(\max)}=8 \mathrm{~V} .$ The period: $T=S_{h} \times x=6 \mathrm{~ms}$; $\omega=\frac{2 \pi}{T}=\frac{1000 \pi}{3}(\mathrm{rad} / \mathrm{s}) ;$	$\begin{gathered} 0.5 \\ 0.25 \\ 0.5 \end{gathered}$
$\begin{aligned} & \text { B-II- } \\ & \text { 2.c) } \end{aligned}$	$\|\varphi\|=2 \pi \times \frac{d}{D}=\frac{\pi}{3}(\mathrm{rad})$ Then $u_{R}=2 \cos \left(\frac{1000 \pi t}{3}-\frac{\pi}{3}\right)$ Ohm's law: $i=0.1 \cos \left(\frac{1000 \pi t}{3}-\frac{\pi}{3}\right)(t$ in s and i in $A)$	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.5 \end{aligned}$
$\begin{aligned} & \text { B-II- } \\ & \text { 2.d) } \end{aligned}$	Law of addition of voltages: $u_{G}=u_{A B}+u_{B C}$; Let $\frac{1000 \pi t}{3}=0$, We get $L=\frac{6 \times 6}{100 \pi \sqrt{3}} \approx 0.066 \mathrm{H}=66 \mathrm{mH}$	1

(اسس التصحيح لاورة 2003 العادية		
Question III (06 points)		
A-1.	The photoelectric effect shows an evidence of corpuscular aspect of light.	0.25
A-2.	Definition	0.5
A-3.	$W_{0}=\frac{h c}{\lambda_{0}}=2.96 \times 10^{-19} \mathrm{~J}=1.85 \mathrm{eV}$	0.5
A-4.	The electron emitted carries kinetic energy. $\lambda<\lambda_{0}=670 \mathrm{~nm}$, electrons are ejected from the surface of the metal; According to Einstein's relation: $E_{p h}=W_{0}+K E_{\text {max }}$. $K E_{\max }=1.2 \times 10^{-19} \mathrm{~J}$	$\begin{aligned} & 0.25 \\ & 0.5 \end{aligned}$
B-1.	Diagram	0.5
B-2.	Same primary source, then coherent sources	0.5
B-3.	The interference phenomenon is due to the superposition of two synchronous and coherent beams	0.5
B-4.a)	On the screen, in the interference zone, we observe: a central bright fringe. alternate, equidistant straight bright and dark fringes	0.5
B.4.b)	The distance between the centers of two consecutives bright fringes is called interfringe distance. $i=0.95 \mathrm{~mm} .$ We have $a=\frac{\lambda D}{i}=1 \mathrm{~mm}$	$\begin{aligned} & 0.5 \\ & 0.25 \\ & 0.75 \end{aligned}$
C	The first experiment (photoelectric emission) shows evidence of the corpuscular aspect of light while the second experiment (interference) shows the wave aspect of light	0.5

