دورة سنة 2001 العادية	امتحاتات شهادة الثاتوية (لـعامة فرع علوم الحياة	وزارة التربية و التعليم العالي المديرية العامة للتربية دائرة الامتحاتات
الالاسم :	مسابقة في الفيزياء المدة : ساعتان	

This exam is formed of three obligatory exercises

 in three pages numbered from 1 to 3. The use of non-programmable calculators is allowed.
First Exercise (7 points) Study of the motion of a horizontal elastic pendulum

The horizontal elastic pendulum of the figure below is formed of a solid (S) of mass $\mathrm{m}=100 \mathrm{~g}$ and a spring of constant $\mathrm{k}=80 \mathrm{~N} / \mathrm{m}$.
The center of mass G of (S) may move along a horizontal axis ($\mathrm{O}, \overrightarrow{\mathrm{i}}$).

At the instant $t_{0}=0$, G being at rest at $O,(S)$ is given an initial velocity $\vec{V}_{0}=V_{0} \vec{i}\left(V_{0}=3 \mathrm{~m} / \mathrm{s}\right)$. (S) thus oscillates around O. the abscissa of G at any instant during oscillations is x and its velocity is $\vec{V}=V \vec{i}$.
The horizontal plane containing G is taken as the gravitational potential energy reference.

A- Free undamped oscillations

In this part, we neglect the forces of friction.

1) a) Write the expression of the mechanical energy of the pendulum [(S), spring] as a function of x and V.
b) Is the mechanical energy of the pendulum conserved? Calculate its value.
2) Derive the second order differential equation that describes the motion of the center of mass G.
3) a) Verify that $x=x_{m} \cos \left(\omega_{o} t+\varphi\right)$ is a solution of this differential equation where $\omega_{0}=\sqrt{\frac{k}{m}}$.

Calculate the values of $\mathrm{x}_{\mathrm{m}}, \varphi$ and the proper period T_{o} of the pendulum.
b) Determine the time interval after which G passes through the origin O for the first time.

B- Free damped oscillations

In this part, the forces of friction are not neglected and (S) performs damped oscillations of pseudoperiod T .

1) Is T smaller, equal or larger than T_{0} ?
2) At the instant $t=T$, the speed of (S) is $2.8 \mathrm{~ms}^{-1}$.
a) What is the position of G at this instant?
b) Calculate the work done by the forces of friction between the two instants $t_{o}=0$ and $t=T$.

Second Exercise (7 points) Determination of the inductance of a coil

In order to determine the inductance L of a coil of negligible resistance, we connect this coil in series with a resistor of resistance $\mathrm{R}=10 \Omega$ across a low frequency generator G (Fig. 1). The generator G delivers an alternating sinusoidal voltage $\mathrm{v}_{\mathrm{G}}=\mathrm{V}_{\mathrm{m}} \cos \omega \mathrm{t}$ (v_{G} in V , t in s).

1) Redraw the diagram of figure (1), showing the connections of the channels of an oscilloscope that allow us to display the voltages v_{G} across the generator and v_{R} across
 the resistor.
2) Which one of the two voltages v_{G} or v_{R} represents the alternating sinusoidal current in the circuit? Justify the answer.
3) In figure 2 , the oscillogram (waveform) (1) displays the variation of the voltage v_{G} as a function of time. Justify specifying which of the oscillograms (1) or (2) leads the other. Determine the phase difference between the two oscillograms.

Time base: $5 \mathrm{~ms} /$ div
Vertical sensitivity on both channels: 1 V/div.
4) Determine, using the oscillograms, the angular frequency ω, the maximum value V_{m} of the voltage across the terminals of G and the amplitude I_{m} of the current carried by the circuit.
5) Write, as a function of time t, the expression of the current i and that of the voltage v_{L} across the coil.
6) Determine the value of L by applying the law of addition of voltages and giving t a particular value.

Third Exercise (6 points) Energy liberated by the disintegration of the cobalt

Given:

${ }_{Z}^{A} \mathrm{X}$	${ }_{27}^{60} \mathrm{Co}$	${ }_{28}^{60} \mathrm{Ni}$	${ }_{-1}^{0} \mathrm{e}$
Masse (en u)	59,9190	59,9154	0,00055

$-1 \mathrm{u}=931,5 \mathrm{MeV} / \mathrm{c}^{2}$.

- Speed of light in vacuum: $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$
- Planck's constant: $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}$
- Avogadro's constant: $6.02 \times 10^{23} \mathrm{~mol}^{-1}$.
- Molar mass of cobalt: $60 \mathrm{~g} . \mathrm{mol}^{-1}$.

1) Determine the remaining number of ${ }_{27}^{60}$ Co nuclei and the activity of this sample at the end of 10.6 years.
2) One of the disintegrations of ${ }_{27}^{60} \mathrm{Co}$ gives rise to the nickel isotope ${ }_{28}^{60} \mathrm{Ni}$.
a) Write, with justification, the equation of the disintegration of one cobalt nucleus ${ }_{27}^{60} \mathrm{Co}$. Identify the emitted particle.
b) Calculate, in MeV , the energy liberated by this disintegration.
c) Determine the energy liberated by the disintegration of 1 g of cobalt ${ }_{27}^{60} \mathrm{Co}$.
d) Knowing that the energy liberated from the complete combustion of 1 g of coal is 30 kJ , find the mass of coal that would liberate the same amount of energy calculated in part c).

Solution

First Exercise (7 points)

1) $\mathrm{M} \cdot \mathrm{E}_{\mathrm{m}}=\mathrm{KE}+\mathrm{PE}_{\mathrm{e}}=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{kx}^{2} \quad(0.5 \mathrm{pt})$
2)

a) The forces of friction are neglected, M.E is conserved
M.E $=\mathrm{ME}_{\mathrm{o}}=\frac{1}{2} \mathrm{mv}_{\mathrm{o}}^{2}+\frac{1}{2} \mathrm{kx}_{\mathrm{o}}^{2}=0.45+0=0.45 \mathrm{~J} . \quad(0.75 \mathrm{pt})$
b)

$$
\frac{\mathrm{dM} \cdot \mathrm{E}}{\mathrm{dt}}=\mathrm{mvv}^{\prime}+\mathrm{kxx}{ }^{\prime}=0 ; \mathrm{v}^{\prime}=\mathrm{x}^{\prime \prime} \text { and } \mathrm{x}^{\prime}=\mathrm{v}
$$

$x "+\frac{k}{m} x=0$
3)
a) $\mathrm{x}=\mathrm{x}_{\mathrm{m}} \cos \left(\omega_{\mathrm{o}} \mathrm{t}+\varphi\right) ; \mathrm{x}^{\prime}=-\mathrm{x}_{\mathrm{m}} \omega_{\mathrm{o}} \cos \left(\omega_{\mathrm{o}} \mathrm{t}+\varphi\right) ; \mathrm{x}^{\prime \prime}=-\mathrm{x}_{\mathrm{m}} \omega_{\mathrm{o}}{ }^{2} \cos \left(\omega_{\mathrm{o}} \mathrm{t}+\varphi\right)$

$$
\begin{equation*}
\mathrm{x}^{\prime \prime}+\omega_{\mathrm{o}}{ }^{2} \mathrm{x}=-\mathrm{x}_{\mathrm{m}} \omega_{\mathrm{o}}{ }^{2} \cos \left(\omega_{\mathrm{o}} \mathrm{t}+\varphi\right)+\mathrm{x}_{\mathrm{m}} \omega_{\mathrm{o}}{ }^{2} \cos \left(\omega_{\mathrm{o}} \mathrm{t}+\varphi\right)=0 \tag{1pt}
\end{equation*}
$$

$x=x_{m} \cos \left(\omega_{\mathrm{o}} t+\varphi\right)$ is a solution of the equation.
b) $-\omega_{\mathrm{o}}=\frac{2 \pi}{\mathrm{~T}_{\mathrm{o}}}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \Rightarrow \mathrm{T}_{\mathrm{o}}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}=0.22 \mathrm{~s}$
$-\mathrm{x}=\mathrm{x}_{\mathrm{m}} ; \mathrm{v}=0$ thus M. $\mathrm{E}_{\mathrm{m}}=\frac{1}{2} \mathrm{kx}_{\mathrm{m}}^{2}=0.45 \mathrm{~J} \Rightarrow \mathrm{x}_{\mathrm{m}}=0.106 \mathrm{~m}=10.6 \mathrm{~cm}$

- at $\mathrm{t}=0, \mathrm{x}_{\mathrm{o}}=0 \Rightarrow \cos \varphi=0$ and $\mathrm{v}_{\mathrm{o}}>0 \Rightarrow \sin \varphi<0$ thus $\varphi=-\frac{\pi}{2} \mathrm{rad}$.
c) (S) performs half a pseudo-period, $t=0.11 \mathrm{~s}$.
(0.25 pt)

B-

1) $T>T_{o}$. (0.25 pt)
2)

a) After a pseudo-period, (S) passes again through O .
b) $\mathrm{W}_{\overrightarrow{\mathrm{f}}}=\underset{\mathrm{t}=0 \rightarrow \mathrm{t}=\mathrm{T}}{\Delta \mathrm{M} \cdot \mathrm{E}}=\mathrm{ME}_{1}-\mathrm{M} \cdot \mathrm{E}_{\mathrm{o}}=0.392-0.45=-0.058 \mathrm{~J}$

1) $(0.5 \mathrm{pt})$
2) $v_{R}=R i, v_{R}$ represents then i to a constant factor.
3) v_{1} becomes zero before v_{2}, thus $v_{1}=v_{G}$ leads $i\left(v_{2}=v_{R}\right.$ represents i).

$$
\begin{align*}
& \mathrm{T} \rightarrow 5 \operatorname{div} \rightarrow 2 \pi \\
& \quad 0.6 \operatorname{div} \rightarrow \varphi \quad \Rightarrow \varphi=0.24 \pi=0.75 \mathrm{rd} \tag{1pt}
\end{align*}
$$

4) $\mathrm{T}=5(\mathrm{div}) \times 5=25 \mathrm{~ms} \Rightarrow \omega=\frac{2 \pi}{\mathrm{~T}}=80 \pi=251 \mathrm{rad} / \mathrm{s}$
$\mathrm{V}_{\mathrm{m}}=4(\mathrm{div}) \mathrm{x} 1=4 \mathrm{~V}$
(0.5 pt)
$\mathrm{V}_{\mathrm{Rm}}=2.8 \mathrm{~V} \Rightarrow \mathrm{~V}_{\mathrm{Rm}}=\mathrm{I}_{\mathrm{m}} \mathrm{R} \Leftrightarrow \mathrm{I}_{\mathrm{m}}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{R}}=0.28 \mathrm{~A}$.
5) i lags behind v_{G} by 0.75 rad ;
$\mathrm{i}=\mathrm{I}_{\mathrm{m}} \cos (\omega \mathrm{t}-\varphi)=0.28 \cos (80 \pi \mathrm{t}-0.75)$
$u_{L}=L \frac{d i}{d t}=-70.3 L \sin (80 \pi t-0.75)$
6) $v_{G}=v_{R}+v_{L}=R i+v_{L}$
$4 \cos (80 \pi t)=2.8 \cos (80 \pi t-0.75)-70.3 L \sin (80 \pi t-0.75)$
for $\mathrm{t}=0 ; \mathrm{L}=41 \mathrm{mH}$.

Third Exercise (6 points)

1) at $\mathrm{t}_{\mathrm{o}}=0$ we have $\mathrm{N}_{\mathrm{o}}=\frac{\mathrm{m}}{\mathrm{M}} \times 6.02 \times 10^{23}=\frac{1}{60} \times 6.02 \times 10^{23} \approx 10^{22}$ nuclei. $(0.5 \mathrm{pt})$

$$
\begin{equation*}
\text { at } \mathrm{t}=2 \mathrm{~T}=10.6 \text { ans, } \mathrm{N}=\frac{\mathrm{N}_{\mathrm{o}}}{2^{2}}=25 \times 10^{22} \text { nuclei. } \tag{0.5pt}
\end{equation*}
$$

$\mathrm{A}=\lambda . \mathrm{N}=\frac{\ln 2}{\mathrm{~T}} \mathrm{~N}=\frac{0.693}{\mathrm{~T}_{(\mathrm{s})}} \mathrm{N}=3.27 \times 10^{13} \mathrm{~Bq}$.
2)
a) ${ }_{27}^{60} \mathrm{Co} \rightarrow{ }_{28}^{60} \mathrm{Ni}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$

The law of conservation of charge number gives: $27=28+\mathrm{Z}$, thus $\mathrm{Z}=-1 . \quad$ (0.5 pt)
The law of conservation of mass number gives: $60=60+A$, thus $A=0$.
The emitted particle is β^{-}.
Then : ${ }_{27}^{60} \mathrm{Co} \rightarrow{ }_{28}^{60} \mathrm{Ni}+{ }_{-1}^{0} \mathrm{e}+{ }_{0}^{0-} v$
b) $\mathrm{E}=\Delta \mathrm{m} \times \mathrm{c}^{2}=\left(\mathrm{m}_{\text {before }}-\mathrm{m}_{\text {after }}\right) \mathrm{c}^{2}=\left(3.05 \times 10^{-3}\right) \times 931.5=2.84 \mathrm{MeV}$
c) $\mathrm{E}^{\prime}=\mathrm{N}_{\mathrm{o}} \times \mathrm{E}=2.84 \times 10^{22} \mathrm{MeV}=2.84 \times 10^{22} \times 1.6 \times 10^{-13}=4.544 \times 10^{9} \mathrm{~J}$.
d) $\mathrm{m}_{\text {coal }}=\frac{4.544 \times 10^{9}}{30 \times 10^{3}}=1.515 \times 10^{5} \mathrm{~g}=151.5 \mathrm{~kg}$

