دورة سنة 2001 العادية	امتحانات شبهادة الثانوية العامة	وزارة التربية والتعليم العالي
	فرع علوم الحياة	المديرية العامة للتربية
		دائرة الامتحاثات
الاسم:	مسابقة في الفيزياء	
الرقم :	المدة: ساعتان	

This exam is formed of three obligatory exercises in three pages numbered from 1 to 3. The use of non-programmable calculators is allowed.

First Exercise (7 points) Study of the motion of a horizontal elastic pendulum

The horizontal elastic pendulum of the figure below is formed of a solid (S) of mass m = 100 g and a spring of constant k = 80 N/m.

The center of mass G of (S) may move along a horizontal axis (O, \vec{i}).

At the instant $t_0 = 0$, G being at rest at O, (S) is given an

initial velocity $\vec{V}_0 = V_0 \vec{i}$ ($V_0 = 3$ m/s). (S) thus oscillates around O. the abscissa of G at any instant during oscillations is x and its velocity is $\vec{V} = V \vec{i}$.

The horizontal plane containing G is taken as the gravitational potential energy reference.

A- Free undamped oscillations

In this part, we neglect the forces of friction.

- 1) a) Write the expression of the mechanical energy of the pendulum [(S), spring] as a function of x and V
 - b) Is the mechanical energy of the pendulum conserved? Calculate its value.
- 2) Derive the second order differential equation that describes the motion of the center of mass G.
- 3) a) Verify that $x=x_m\cos{(\omega_o t+\phi)}$ is a solution of this differential equation where $\omega_o=\sqrt{\frac{k}{m}}$.

Calculate the values of x_m , ϕ and the proper period T_o of the pendulum.

b) Determine the time interval after which G passes through the origin O for the first time.

B- Free damped oscillations

In this part, the forces of friction are not neglected and (S) performs damped oscillations of pseudoperiod T.

- 1) Is T smaller, equal or larger than T_o?
- 2) At the instant t = T, the speed of (S) is 2.8 ms⁻¹.
 - a) What is the position of G at this instant?
 - b) Calculate the work done by the forces of friction between the two instants $t_{\rm o}=0$ and t=T.

Second Exercise (7 points) Determination of the inductance of a coil

In order to determine the inductance L of a coil of negligible resistance, we connect this coil in series with a resistor of resistance $R=10~\Omega$ across a low frequency generator G (Fig. 1). The generator G delivers an alternating sinusoidal voltage $v_G = V_m \cos \omega t$ (v_G in V, t in s).

- 1) Redraw the diagram of figure (1), showing the connections of the channels of an oscilloscope that allow us to display the voltages v_G across the generator and v_R across the resistor.
- 2) Which one of the two voltages v_G or v_R represents the alternating sinusoidal current in the circuit? Justify the answer.
- 3) In figure 2, the oscillogram (waveform) (1) displays the variation of the voltage v_G as a function of time. Justify specifying which of the oscillograms (1) or (2) leads the other. Determine the phase difference between the two oscillograms.

Time base: 5 ms/div

Vertical sensitivity on both channels: 1 V/div.

- 4) Determine, using the oscillograms, the angular frequency ω , the maximum value V_m of the voltage across the terminals of G and the amplitude I_m of the current carried by the circuit.
- 5) Write, as a function of time t, the expression of the current i and that of the voltage v_L across the coil.
- 6) Determine the value of L by applying the law of addition of voltages and giving t a particular value.

Third Exercise (6 points) Energy liberated by the disintegration of the cobalt

Given:

${}_{Z}^{A}X$	⁶⁰ ₂₇ Co	⁶⁰ ₂₈ Ni	0 -1e
Masse (en u)	59,9190	59,9154	0,00055

 $-1 u = 931,5 \text{ MeV/c}^2$.

- Speed of light in vacuum: $c = 3 \times 10^8 \text{ ms}^{-1}$

- Planck's constant: $h = 6.63 \times 10^{-34} \text{ J.s}$

- Avogadro's constant: 6.02 x 10²³ mol⁻¹.

- Molar mass of cobalt: 60 g.mol⁻¹.

- 1) Determine the remaining number of $^{60}_{27}$ Co nuclei and the activity of this sample at the end of 10.6 years.
- 2) One of the disintegrations of ${}^{60}_{27}$ Co gives rise to the nickel isotope ${}^{60}_{28}$ Ni.
 - a) Write, with justification, the equation of the disintegration of one cobalt nucleus $^{60}_{27}$ Co . Identify the emitted particle.
 - b) Calculate, in MeV, the energy liberated by this disintegration.
 - c) Determine the energy liberated by the disintegration of 1 g of cobalt $^{60}_{27}\mathrm{Co}\,.$
 - d) Knowing that the energy liberated from the complete combustion of 1 g of coal is 30 kJ, find the mass of coal that would liberate the same amount of energy calculated in part c).

Solution

First Exercise (7 points)

1)
$$M.E_m = KE + PE_e = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$$
 (0.5 pt)

2)

a) The forces of friction are neglected, M.E is conserved

M.E = ME_o =
$$\frac{1}{2}$$
 mv_o² + $\frac{1}{2}$ kx_o² = 0.45 + 0 = 0.45 J. (0.75 pt)

b)

$$\frac{dM.E}{dt} = mvv' + kxx' = 0; \ v' = x'' \text{ and } x' = v$$

$$x'' + \frac{k}{m}x = 0$$
(0.75 pt)

3)

a)
$$x = x_m \cos(\omega_o t + \phi)$$
; $x' = -x_m \omega_o \cos(\omega_o t + \phi)$; $x'' = -x_m \omega_o^2 \cos(\omega_o t + \phi)$
 $x'' + \omega_o^2 x = -x_m \omega_o^2 \cos(\omega_o t + \phi) + x_m \omega_o^2 \cos(\omega_o t + \phi) = 0$

$$x = x_m \cos(\omega_0 t + \varphi)$$
 is a solution of the equation. (1 pt)

b) -
$$\omega_{o} = \frac{2\pi}{T_{o}} = \sqrt{\frac{k}{m}} \Rightarrow T_{o} = 2\pi\sqrt{\frac{m}{k}} = 0.22 \text{ s}$$
 (0.75 pt)

-
$$x = x_m$$
; $v = 0$ thus M.E_m = $\frac{1}{2}kx_m^2 = 0.45 \text{ J} \implies x_m = 0.106 \text{ m} = 10.6 \text{ cm}$ (0.75 pt)

- at
$$t=0$$
, $x_0=0 \Rightarrow \cos \phi = 0$ and $v_0>0 \Rightarrow \sin \phi < 0$ thus $\phi = -\frac{\pi}{2}$ rad. (0.5 pt)

c) (S) performs half a pseudo-period, t = 0.11 s. (0.25 pt)

B-

1)
$$T > T_o$$
. (0.25 pt)

2)

b)
$$W_{\vec{f}} = \Delta M.E_1 = ME_1 - M.E_0 = 0.392 - 0.45 = -0.058 J$$
 (1.25 pts)

- 2) $v_R = Ri$, v_R represents then i to a constant factor. (0.5 pt
- 3) v_1 becomes zero before v_2 , thus $v_1 = v_G$ leads i ($v_2 = v_R$ represents i).

$$T \rightarrow 5 \text{ div} \rightarrow 2 \pi$$

$$0.6 \text{ div} \rightarrow \varphi \implies \varphi = 0.24 \pi = 0.75 \text{ rd}$$
 (1 pt)

4) T = 5 (div) x 5 = 25 ms
$$\Rightarrow \omega = \frac{2\pi}{T} = 80\pi = 251 \text{ rad/s}$$
 (0.5 pt)

$$V_m = 4 \text{ (div) } x \ 1 = 4 \text{ V}$$
 (0.5 pt)

$$V_{Rm} = 2.8 \text{ V} \implies V_{Rm} = I_m \text{ R} \Leftrightarrow I_m = \frac{V_m}{R} = 0.28 \text{ A}.$$
 (1.5 pts)

5) i lags behind v_G by 0.75 rad;

$$i = I_m \cos(\omega t - \varphi) = 0.28 \cos(80\pi t - 0.75)$$

$$u_L = L \frac{di}{dt} = -70.3 \text{ L sin } (80\pi \text{ t} - 0.75)$$
 (1 pt)

6) $v_G = v_R + v_L = Ri + v_L$

$$4\cos(80\pi t) = 2.8\cos(80\pi t - 0.75) - 70.3 L\sin(80\pi t - 0.75)$$

for
$$t = 0$$
; $L = 41 \text{ mH}$. (1.5 pt)

Third Exercise (6 points)

1) at
$$t_0 = 0$$
 we have $N_0 = \frac{m}{M} \times 6.02 \times 10^{23} = \frac{1}{60} \times 6.02 \times 10^{23} \approx 10^{22}$ nuclei. (0.5 pt)

at t = 2 T = 10.6 ans, N =
$$\frac{N_o}{2^2}$$
 = 25x10²² nuclei. (0.5 pt)

A =
$$\lambda . N = \frac{\ln 2}{T} N = \frac{0.693}{T_{(s)}} N = 3.27 \times 10^{13} \text{ Bq}$$
. (1.25 pts)

2)

a)
$$^{60}_{27}\text{Co} \rightarrow ^{60}_{28}\text{Ni} + ^{A}_{Z}\text{X}$$

The law of conservation of charge number gives:
$$27 = 28 + Z$$
, thus $Z = -1$. (0.5 pt)

The law of conservation of mass number gives: 60 = 60 + A, thus A = 0. (0.5 pt) The emitted particle is β .

Then:
$${}_{27}^{60}\text{Co} \rightarrow {}_{28}^{60}\text{Ni} + {}_{-1}^{0}\text{e} + {}_{0}^{0}\text{v}$$
 (1 pt)

b)
$$E = \Delta m \times c^2 = (m_{before} - m_{after})c^2 = (3.05 \times 10^{-3}) \times 931.5 = 2.84 \text{ MeV}$$
 (1 pt)

c)
$$E' = N_o \times E = 2.84 \times 10^{22} \text{ MeV} = 2.84 \times 10^{22} \times 1.6 \times 10^{-13} = 4.544 \times 10^9 \text{ J.}$$
 (0.25 pt)

d)
$$m_{\text{coal}} = \frac{4.544 \times 10^9}{30 \times 10^3} = 1.515 \times 10^5 \text{ g} = 151.5 \text{ kg}$$
 (0.5 pt)

