الاسم: الرّقم: مسابقة في مادّة الفيزياء المدة: ساعتان ونصف

This exam is formed of four obligatory exercises in four pages. The use of non-programmable calculator is recommended.

Exercise 1 (5 pts)

Motion on a slide

In a park, a child plays on a slide.

The child, considered as a particle, has a mass M = 20 kg. He climbs to point A the top of the slide, and then slides down without initial velocity to point B at the bottom of the slide at the ground level (Doc. 1).

The part AB of the slide is straight and inclined by an angle

 $\alpha = 30^{\circ}$ with respect to the horizontal. The top A of the slide is situated at a height $h_A = 1.8$ m above the ground.

Point A is taken as the origin of the x-axis, passing through AB, and

of unit vector i (Doc. 2).

The aim of this exercise is to determine the duration of motion of the child from A to B in two cases: without friction and with friction. Take[.]

- the horizontal plane passing through B as a reference level for gravitational potential energy;
- $g = 10 \text{ m/s}^2$.
- 1) The child climbs from the ground to point A.
 - **1.1)** Calculate the variation of the gravitational potential \triangle GPE of the system (Child, Earth) between the ground and A.
 - **1.2)** Calculate the work W done by the weight of the child, when he climbs from the ground to A, knowing that $W = M g (h_i - h_f)$ where h_i and h_f are the initial and final heights above the ground.
 - **1.3)** Compare W and \triangle GPE.
- 2) Suppose that the child slides without friction from A to B.
 - **2.1)** Determine the speed V_B of the child when he reaches the ground at B.
 - **2.2)** Show that the variation of the linear momentum of the child between A and B is $\Delta \vec{P} = 120 \vec{i}$ (kg.m/s).
 - 2.3) Show that the sum of the external forces exerted on the child, during the downward motion from A to B is $\Sigma \vec{F}_{ext} = 100 i$ (N).

2.4) Deduce, by applying Newton's second law, the duration Δt_1 along AB, knowing that $\frac{\Delta \vec{P}}{\Delta t} = \frac{d\vec{P}}{dt}$.

- 3) In reality, the child is submitted to a force of friction \vec{f} , supposed constant and parallel to the displacement. During the motion from A to B, the system (Child, Slide, Earth, Atmosphere) loses 25% of its mechanical energy at A.
 - **3.1)** Show that during the downward motion of the child from A to B, the variation in the internal energy of the system (Child, Slide, Earth, Atmosphere) is $\Delta U = 90$ J.
 - **3.2)** Deduce that the magnitude of the friction force f is f = 25 N.
 - **3.3)** The variation of the linear momentum of the child between A and B, in this case, is $\Delta \vec{P} = 60\sqrt{3} \vec{i}$ (kg.m/s).

Determine, by applying Newton's second law, the duration Δt_2 along AB, knowing that $\frac{\Delta \vec{P}}{\Delta t} = \frac{d\vec{P}}{dt}$.

Exercise 2 (5.5 pts)

Effect of the capacitance on the duration of discharging of a capacitor

The aim of this exercise is to study the effect of the capacitance of a capacitor on the duration of discharging of a capacitor.

For this aim, we set-up the circuit of document 3 that includes:

- a capacitor, initially uncharged, of adjustable capacitance C;
- two identical resistors of resistance $R = 100 \Omega$;
- an ideal battery of voltage $u_{PN} = E$;
- a double switch K.

1) Charging the capacitor

At $t_0 = 0$, K is turned to position (1) and the charging process of the capacitor starts. At an instant t_1 , the capacitor is completely charged.

1.1) Indicate the value of the current i carried by the circuit at t_1 .

1.2) Write, at t₁, the charge Q in the capacitor in terms of E and C.

2) Discharging the capacitor

The capacitor is completely charged.

At an instant $t_0 = 0$, taken as an initial time, the switch K is turned to position (2); the phenomenon of discharging of the capacitor thus starts.

2.1) Show that the differential equation that describes the variation of the charge q of plate A of the capacitor

is: R
$$\frac{dq}{dt} + \frac{q}{C} = 0$$
.

2.2) The solution of this differential equation is of the $\frac{-t}{2}$

form: $q = Q e^{\frac{\tau}{\tau}}$ where τ is a constant. Determine the expression of τ in terms of R and C.

- **2.3)** Calculate the ratio $\frac{q}{Q}$ at $t = \tau$.
- **2.4)** Verify that the capacitor is practically completely discharged at $t_2 = 5 \tau$.

3) Duration of discharging a capacitor

We repeat the charging and the discharging of the capacitor by giving C two different values C_1 and C_2 . The curves of document 4 show the charge q during the discharging process of the capacitor for each value of C as functions of time.

3.1) Using document 4, copy and complete the below table:

	The charge Q (in C) at $t_0 = 0$	The time constant τ (in ms)
Curve (1) corresponds to $C = C_1$	Q ₁ =	$\tau_1 =$
Curve (2) corresponds to $C = C_2$	Q ₂ =	$\tau_2 =$

- **3.2)** Calculate the values C_1 and C_2 .
- **3.3)** Deduce the effect of the capacitance of the capaitor on the duration of the discharging process.

Exercise 3 (5.5 pts)

Inductance and resistance of a coil

Consider a coil of inductance L and internal resistance r.

The aim of this exercise is to determine L and r by two different methods.

1) First method

A portion of a circuit is formed of the coil, that carries a current « i ». The coil is oriented positively from A to B (Doc. 5).

- **1.1)** Write the expression of the self-induced electromotive force « e » in the coil in terms of L, i and time t.
- 1.2) The curves (1) and (2) of document 6 show respectively « i » and « e » as functions of time, between 0 and 4 ms. Using document 6:

1.2.1) Justify each of the following statements:

- Statement 1: between 0 and 2 ms, the coil acts as a resistor of resistance r.
- Statement 2: between 2 ms and 4 ms, a phenomenon of self-induction takes place in the coil.
- Statement 3: between 2 ms and 4 ms the coil supplies the circuit with the stored magnetic energy.
- **1.2.2)** Determine the value of L.
- **1.2.3)** Determine the value of r, knowing that $u_{AB} = -5 \text{ V}$ at t = 3 ms.

2) Second method

We connect the coil in series with an ideal battery (G) of electromotive force (e.m.f) E = 20 V (Doc.7).

At $t_0 = 0$, we close the switch K.

At an instant t, the circuit carries a current i.

Document 8 shows the current i as a function of time and the tangent (T) to the curve i(t) at $t_0 = 0$.

- **2.1)** Establish the first order differential equation that describes the variation of the current i as a function of time.
- **2.2)** Determine the expression of the maximum current I_m , at the steady state, in terms of E and r.
- **2.3)** Calculate r using document 8.
- **2.4)** Determine, using the differential equation, the di

expression of $\frac{di}{dt}$ at $t_0 = 0$ in terms of E and L.

2.5) Calculate the slope of the tangent (T). Deduce L.

Exercise 4 (4 pts)

Diameter of a fishing line

The aim of this exercise is to determine whether the fishing line chosen by a fisherman is suitable to catch the trout fish of a specific size using the phenomenon of diffraction.

1) Set-up of diffraction

A monochromatic light, of wavelength λ , falls normally on a vertical narrow slit of width « a ». The diffraction pattern is observed on a screen placed perpendicularly to the incident light beam at a distance D from the slit. Let «L» be the linear width of the central bright fringe (Doc. 9). The diffraction angles in this exercise are small. For small angle, take $\tan \theta \approx \sin \theta \approx \theta$ in radian.

- **1.1)** Describe the diffraction pattern observed on the screen.
- **1.2)** Write, in terms of λ and « a », the expression of the angle of diffraction θ_1 corresponding to the center of the first dark fringe.

1.3) Show that
$$L = \frac{2\lambda D}{a}$$

2) Diameter of fishing line

A fisherman wants to catch a trout fish of size 50 cm to 55 cm. He bought a thin fishing line made up of 100% copolymer, but the strength of a fishing line also depends on its diameter « a ».

To find out if the chosen fishing line is suitable for such a type of fish, he uses the diffraction set-up of document 9 by replacing the slit of width « a » by the fishing line of diameter « a », so he obtains a diffraction pattern similar to that shown in document 9.

The screen is placed at a distance D from the fishing line, the linear width of the central bright fringe is $L_1 = 13$ mm. The screen is displaced by 50 cm away from the fishing line, the linear width of the central bright fringe becomes $L_2 = 19.5$ mm.

- **2.1)** Show that D = 1 m.
- 2.2) Calculate the diameter « a » of the chosen fishing line, knowing that the wavelength of the used light is $\lambda = 650$ nm.
- 2.3) Referring to the table in document 10, specify if the chosen fishing line is suitable for fishing trout fish of size 50 to 55 cm.

Fishing line (100 % copolymer)	Diameter	Use	
Fishing line (1)	0.10 mm	It is suitable to fishing a trout fish of size 35 cm to 40 cm.	
Fishing line (2)	0.18 mm	It is suitable to fishing a trout fish of size 50 cm to 55 cm.	
Fishing line (3)	0.25 mm	It is suitable to fishing a trout fish of size 65 cm to 70 cm.	
		https://www.truitesaquaponiques.com/	
Doc. 10			

امتحانات الشهادة الثانوية العامة فرع العلوم العامَة

مسابقة الفيزياء أسس التصحيح

Exercise	e 1 (5 pts) Motion on a slide	
Part	Answer	Mark
1.1	The gravitational potential energy of the system at B $GPE_{ground} = 0$ and at A, $GPE_A = M g h_A = 360 J$ $\Delta GPE = GPE_A - GPE_B = 360 - 0 = 360 J$	0.75
1.2	The work done by the weight of the child, when he moves from the ground to the top A: W = M g ($h_i - h_f$) = 20×10×(0 - 1.8) = -360 J	0.25
1.3	$W_{weight} = -\Delta GPE$	0.25
2.1	$\begin{split} ME_A &= GPE_A + KE_A = 360 \text{ J} (KE_A = 0 \text{ since } V_A = 0) \\ \text{In the absence of friction, (or the work done by the nonconsevative forces is zero)} \\ \text{the mechanical energy of the system is conserved,} \\ \text{then } ME_B &= ME_A = 360 \text{ J} \\ \text{But } ME_B &= KE_B + GPE_B \text{ ; } GPE_B = 0 \text{ (on reference)} \\ \text{So } \frac{1}{2} \text{ M } V_B^2 &= 360 \text{ therefore } V_B = 6 \text{ m/s} \end{split}$	0.75
2.2	$\Delta \vec{P} = \vec{P}_B - \vec{P}_A$; $\Delta \vec{P} = M \vec{V}_B - M \vec{V}_A$, therefore $\Delta \vec{P} = 20 \times 6 \vec{i} - \vec{0}$, then $\Delta \vec{P} = 120 \vec{i}$	0.5
2.3	$\Sigma \vec{F}_{ext} = M \vec{g} + \vec{N}$, along $\vec{i} : \Sigma \vec{F}_{ext} = Mg.sin\alpha \vec{i} + \vec{0} = 100 \vec{i}$	0.5
2.4	$\Delta \vec{P} = \Sigma \vec{F}_{Ext} \times \Delta t_1$, so $120 \vec{i} = 100 \vec{i} \times \Delta t_1$, then $\Delta t_1 = 1.2$ s	0.25
3.1	The system (Child, Slide, Earth, Atmosphere) is energetically isolated, So its total energy $E = ME + U = constant$ So, $\Delta U = -\Delta(ME)$ There is a loss of 25 % of ME; so $\Delta(ME) = -0.25 \times ME_A = -0.25(360) = -90$ J: Hence, $\Delta U = 90$ J	0.75
3.2	The variation in mechanical energy equals the work of friction: $\Delta ME = W_{\tilde{f}} \text{ so } \Delta(ME) = -90 = -f \times AB = -f \times \frac{h_A}{\sin(\alpha)}$ $-90 = -f \times 3.6 \text{ , thus } f = 25 \text{ N}$	0.5
3.3	$\Delta \vec{P} = \Sigma \vec{F}_{ext} \times \Delta t_2, \ \Sigma \vec{F}_{Ext} = (Mg.sin\alpha - f) \vec{i} + \vec{0}$ so 60 $\sqrt{3} \vec{i} = (100 - 25) \vec{i} \times \Delta t_2$, then $\Delta t_2 = 1.385$ s	0.5

Exercise 2 (5.5 pts) Effect of the capacitance on the discharging of a capacitor			
Part	Answer	Mark	
1.1	At instant $t_1 : i = 0$	0.25	
1.2	Q = C E	0.25	
2.1	$u_C = u_{DF} = u_R$; $\frac{q}{C} = R i$; But $i = -\frac{d q}{d t}$ so we get: $R \frac{d q}{d t} + \frac{q}{C} = 0$	0.5	
2.2	$q = Q \ e^{\frac{-t}{\tau}}; \ \frac{dq}{dt} = -\frac{Q}{\tau} \ e^{\frac{-t}{\tau}} \ \text{we substitute } q \text{ and } \frac{dq}{dt} \text{ in the differential equation}$ $-R \ \frac{Q}{\tau} \ e^{\frac{-t}{\tau}} + \frac{Qe^{\frac{-t}{\tau}}}{C} = 0 \ ; Qe^{\frac{-t}{\tau}} \left[-\frac{R}{\tau} + \frac{1}{C}\right] = 0;$ $But \ Qe^{\frac{-t}{\tau}} \neq 0; \ so \ -\frac{R}{\tau} + \frac{1}{C} = 0; \text{ therefore } \frac{R}{\tau} = \frac{1}{C}$ $thus \ \tau = RC$	1	
2.3	the ratio: $\frac{q}{Q} = \frac{Qe^{\frac{-t}{\tau}}}{Q}$ at $t = \tau$: $\frac{q}{Q} = e^{-1} = 0.37$	0.5	
2.4	$q = Q e^{\frac{-t}{\tau}}$; à $t_2 = 5 RC$: $q = Q e^{-5} = 0.006 Q \approx 0$	0.5	
3.1	Curve (1): At $t_0 = 0$: $Q_1 = 50 \times 10^{-5}$ C at $t = \tau_1$: $q = 0.37 \times 50 \times 10^{-5} = 18.5 \times 10^{-5}$ C. From the graph: $q = 18.5 \times 10^{-5}$ C at $t = 5$ ms ; so $\tau_1 = 5$ ms Curve (2): at $t_0 = 0$: $Q_2 = 5 \times 10^{-5}$ C at $t = \tau_2$: $q = 0.37 \times 5 \times 10^{-5} = 1.85 \times 10^{-5}$ C. From the graph: $q = 1.85 \times 10^{-5}$ C at $t = 0.5$ ms ; so $\tau_1 = 0.5$ ms $\frac{Charge Q at t_0 = 0}{Curve (1) \text{ for } C = C_1} = \frac{Q_1 = 50 \times 10^{-5}}{Q_1 = 50 \times 10^{-5}} \frac{C}{C} = \frac{\tau_2 = 0.5}{C} \frac{T_2 = 0.5}{C} T$	1	
3.2	$\tau_1 = R C_1$, so $C_1 = \frac{\tau_1}{R}$: $C_1 = \frac{5 \times 10^{-3}}{100}$ thus $C_1 = 5 \times 10^{-5} F = 50 \ \mu F$ $\tau_2 = R C_2$, so $C_2 = \frac{\tau_2}{R}$; $C_2 = \frac{0.5 \times 10^{-3}}{100}$ thus $C_2 = 0.5 \times 10^{-5} F = 5 \ \mu F$	1	
3.3	As the capacitance increases, the duration of discharging increases	0.5	

Exercis	Exercise 3 (5.5 pts) Characteristics of a coil		
Part	Answer	Mark	
1.1	$e = -L \frac{di}{dt}$	0.25	
1.2.1	 Statement 1 : During this interval i = constant, so di/dt = 0 thus e = 0, The voltage across the coil u_{AB} = ri - e = ri The coil acts as a resistor of resistance r. Statement 2 : i varies with time so e ≠ 0 therefore e exists this implies that a phenomenon of self-induction appears in the circuit. Statement 3 : i decreases, then W_{mag} = 1/2 Li² decreases Or e.i > 0, then it acts as a generator 	1.5	
1.2.2	Between 2 ms and 4 ms : $e = 10 V$ $\frac{di}{dt} = slope = \frac{0-1}{4 \times 10^{-3} - 2 \times 10^{-3}} = -500 \text{ A/s}$ $e = -L \frac{di}{dt}$ so : $10 = -L(-500)$, thus $L = 0.02 \text{ H} = 20 \text{ mH}$	0.75	
1.2.3	$u_{AB} = ri - e$; at $t = 3 \text{ ms} : -5 = r (0.5) - 10$ 0,5 $r = 10 - 5 = 5$, then $r = 10 \Omega$	0.5	
2.1	$u_g = u_L$; $E = ri + L \frac{di}{dt}$;	0.5	
2.2	in steady state : $i = I_m$; and $\frac{di}{dt} = 0$ so $E = r I_m$, thus $I_m = \frac{E}{r}$	0.5	
2.3	$I_m = 2 A; 2 = \frac{20}{r}$, then $r = 10 \Omega$	0.25	
2.4	$E = r i + L \frac{di}{dt}, \text{ then } \frac{di}{dt} = E - r i;$ At t ₀ = 0: i = 0 then $\frac{di}{dt} \Big _{t_0 = 0} = \frac{E}{L}$	0.5	
2.5	Slope of the tangent $= \frac{2}{2 \times 10^{-3}} = 1000 \text{ A/s}$ But, slop of the tangent $= \frac{\text{di}}{\text{dt}} \Big _{t_0=0} = \frac{\text{E}}{\text{L}}$; So, $1000 = \frac{20}{\text{L}}$, then $\text{L} = 0.02 \text{ H} = 20 \text{ mH}$	0.75	

Exercise 4 (4 pts) Diameter of a fishing line			
Part	Answer	Mark	
1.1	 We observe on the screen: ✓ Alternating bright and dark fringes; ✓ The central bright fringe is the most intense and has a width double that of the other bright fringes; ✓ The direction of the fringes is perpendicular to the direction of the slit. 	0.75	
1.2	$\sin\theta_1 \approx \theta_1 = \frac{\lambda}{a}$	0.25	
1.3	$\tan \theta_1 = \frac{L/2}{D}$, then $\theta_1 = \frac{L}{2D}$; $\frac{\lambda}{a} = \frac{L}{2D}$; thus, $L = \frac{2\lambda D}{a}$	1	
2.1	$\frac{\lambda}{a} = \frac{L_1}{2D_1} = \frac{L_2}{2D_2} ; \frac{L_2}{L_1} = \frac{D_2}{D_1} = \frac{D+0.5}{D}$ $\frac{L_2}{L_1} = \frac{D+0.5}{D} , \text{ so } \frac{19.5}{13} = \frac{D+0.5}{D}$ then 19.5 D = 13 D + 6.5 ; thus D = 1 m	1	
2.2	$a = \frac{2\lambda D}{L_1}$ then $a = \frac{2 \times 650 \times 10^{-9} \times 1}{1.3 \times 10^{-2}}$; $a = 0.1 \text{ mm}$	0.5	
2.3	The chosen line is not suitable to catch the trout fish of size 50 to 55 cm. Because the diameter of the line is less than 0.18 mm.	0.5	