الالام:	مسابقةّ في مادّة الفّيزياء
الرّقم:	المدّة: ساعتان ونصف

This exam is formed of four obligatory exercises in four pages.

The use of non-programmable calculator is recommended.

Exercise 1 (5 pts)

Motion on a slide

In a park, a child plays on a slide.
The child, considered as a particle, has a mass $M=20 \mathrm{~kg}$.
He climbs to point A the top of the slide, and then slides down without initial velocity to point B at the bottom of the slide at the ground level (Doc. 1).
The part AB of the slide is straight and inclined by an angle $\alpha=30^{\circ}$ with respect to the horizontal. The top A of the slide is situated at a height $\mathrm{h}_{\mathrm{A}}=1.8 \mathrm{~m}$ above the ground.
Point A is taken as the origin of the x-axis, passing through $A B$, and of unit vector \vec{i} (Doc. 2).
The aim of this exercise is to determine the duration of motion of the child from A to B in two cases: without friction and with friction. Take:

- the horizontal plane passing through B as a reference level for gravitational potential energy;
- $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

1) The child climbs from the ground to point A.

1.1) Calculate the variation of the gravitational potential $\triangle \mathrm{GPE}$ of the system (Child, Earth) between the ground and A.
1.2) Calculate the work W done by the weight of the child, when he climbs from the ground to A , knowing that $\mathrm{W}=\mathrm{Mg}\left(\mathrm{h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{f}}\right)$ where h_{i} and h_{f} are the initial and final heights above the ground.
1.3) Compare W and $\triangle \mathrm{GPE}$.
2) Suppose that the child slides without friction from A to B.
2.1) Determine the speed V_{B} of the child when he reaches the ground at B.
2.2) Show that the variation of the linear momentum of the child between A and B is $\Delta \overrightarrow{\mathrm{P}}=120 \overrightarrow{\mathrm{i}}(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s})$.
2.3) Show that the sum of the external forces exerted on the child, during the downward motion from A to B is $\Sigma \overrightarrow{\mathrm{F}}_{\text {ext. }}=100 \overrightarrow{\mathrm{i}}(\mathrm{N})$.
2.4) Deduce, by applying Newton's second law, the duration Δt_{1} along $A B$, knowing that $\frac{\Delta \overrightarrow{\mathrm{P}}}{\Delta \mathrm{t}}=\frac{\mathrm{d} \overrightarrow{\mathrm{P}}}{\mathrm{dt}}$.
3) In reality, the child is submitted to a force of friction $\overrightarrow{\mathrm{f}}$, supposed constant and parallel to the displacement.

During the motion from A to B, the system (Child, Slide, Earth, Atmosphere) loses 25% of its mechanical energy at A.
3.1) Show that during the downward motion of the child from A to B, the variation in the internal energy of the system (Child, Slide, Earth, Atmosphere) is $\Delta \mathrm{U}=90 \mathrm{~J}$.
3.2) Deduce that the magnitude of the friction force \vec{f} is $f=25 N$.
3.3) The variation of the linear momentum of the child between A and B, in this case, is $\Delta \overrightarrow{\mathrm{P}}=60 \sqrt{3} \vec{i}(\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})$.

Determine, by applying Newton's second law, the duration $\Delta \mathrm{t}_{2}$ along AB, knowing that $\frac{\Delta \overrightarrow{\mathrm{P}}}{\Delta \mathrm{t}}=\frac{\mathrm{d} \overrightarrow{\mathrm{P}}}{\mathrm{dt}}$.

Exercise 2 (5.5 pts)

Effect of the capacitance on the duration of discharging of a capacitor

The aim of this exercise is to study the effect of the capacitance of a capacitor on the duration of discharging of a capacitor.
For this aim, we set-up the circuit of document 3 that includes:

- a capacitor, initially uncharged, of adjustable capacitance C;
- two identical resistors of resistance $\mathrm{R}=100 \Omega$;
- an ideal battery of voltage upn $=\mathrm{E}$;
- a double switch K.

1) Charging the capacitor

At $t_{0}=0, \mathrm{~K}$ is turned to position (1) and the charging process of the capacitor starts. At an instant t_{1}, the capacitor is completely charged.
1.1) Indicate the value of the current i carried by the circuit at t_{1}.

Doc. 3
1.2) Write, at t_{1}, the charge Q in the capacitor in terms of E and C.
2) Discharging the capacitor

The capacitor is completely charged.
At an instant $\mathrm{t}_{0}=0$, taken as an initial time, the switch K is turned to position (2); the phenomenon of discharging of the capacitor thus starts.
2.1) Show that the differential equation that describes the variation of the charge q of plate A of the capacitor is: $R \frac{d q}{d t}+\frac{\mathrm{q}}{\mathrm{C}}=0$.
2.2) The solution of this differential equation is of the form: $\mathrm{q}=\mathrm{Q} \mathrm{e}^{\frac{-\mathrm{t}}{\tau}}$ where τ is a constant.
Determine the expression of τ in terms of R and C .
2.3) Calculate the ratio $\frac{\mathrm{q}}{\mathrm{Q}}$ at $\mathrm{t}=\tau$.
2.4) Verify that the capacitor is practically completely discharged at $\mathrm{t}_{2}=5 \tau$.

3) Duration of discharging a capacitor

We repeat the charging and the discharging of the capacitor by giving C two different values C_{1} and C_{2}. The curves of document 4 show the charge q during the discharging process of the capacitor for each value of C
 as funcrions of time.
3.1) Using document 4 , copy and complete the below table:

	The charge Q (in C) at $\mathrm{t}_{0}=0$	The time constant τ (in ms)
Curve (1) corresponds to $\mathrm{C}=\mathrm{C}_{1}$	$\mathrm{Q}_{1}=$	$\tau_{1}=$
Curve (2) corresponds to $\mathrm{C}=\mathrm{C}_{2}$	$\mathrm{Q}_{2}=$	$\tau_{2}=$

3.2) Calculate the values C_{1} and C_{2}.
3.3) Deduce the effect of the capacitance of the capaitor on the duration of the discharging process.

Exercise 3 (5.5 pts)

Inductance and resistance of a coil

Consider a coil of inductance L and internal resistance r .
The aim of this exercise is to determine L and r by two different methods.

1) First method

A portion of a circuit is formed of the coil, that carries a current « $\mathrm{i} »$. The coil is oriented positively from A to B (Doc. 5).

1.1) Write the expression of the self-induced electromotive force «e» in the coil in terms of L, i and time t.
1.2) The curves (1) and (2) of document 6 show respectively « $\mathrm{i} »$ and «e » as functions of time, between 0 and 4 ms .
Using document 6 :
1.2.1) Justify each of the following statements:

- Statement 1: between 0 and 2 ms , the coil acts as a resistor of resistance r.
- Statement 2: between 2 ms and 4 ms , a phenomenon of self-induction takes place in the coil.
- Statement 3: between 2 ms and 4 ms the coil supplies the circuit with the stored magnetic energy.
1.2.2) Determine the value of L.
1.2.3) Determine the value of r, knowing that $u_{A B}=-5 V$ at $\mathrm{t}=3 \mathrm{~ms}$.

2) Second method

We connect the coil in series with an ideal battery (G) of electromotive force (e.m.f) $\mathrm{E}=20 \mathrm{~V}$ (Doc.7).
At $\mathrm{t}_{0}=0$, we close the switch K.
At an instant t, the circuit carries a current i.
Document 8 shows the current i as a function of time and the tangent (T) to the curve $\mathrm{i}(\mathrm{t})$ at $\mathrm{t}_{0}=0$.
2.1) Establish the first order differential equation that describes the variation of the current i as a function of time.
2.2) Determine the expression of the maximum current I_{m}, at the steady state, in terms of E and r .
2.3) Calculate r using document 8 .
2.4) Determine, using the differential equation, the expression of $\frac{d i}{d t}$ at $t_{0}=0$ in terms of E and L.
2.5) Calculate the slope of the tangent (T). Deduce L.

Exercise 4 (4 pts)

Diameter of a fishing line

The aim of this exercise is to determine whether the fishing line chosen by a fisherman is suitable to catch the trout fish of a specific size using the phenomenon of diffraction.

1) Set-up of diffraction

A monochromatic light, of wavelength λ, falls normally on a vertical narrow slit of width « a ». The diffraction pattern is observed on a screen placed perpendicularly to the incident light beam at a distance D from the slit.
Let «L» be the linear width of the central bright fringe (Doc. 9). The diffraction angles in this exercise are small.
For small angle, take $\tan \theta \approx \sin \theta \approx \theta$ in radian.
1.1) Describe the diffraction pattern observed on the screen.

1.2) Write, in terms of λ and « $a »$, the expression of the angle of diffraction θ_{1} corresponding to the center of the first dark fringe.
1.3) Show that $\mathrm{L}=\frac{2 \lambda \mathrm{D}}{\mathrm{a}}$.

2) Diameter of fishing line

A fisherman wants to catch a trout fish of size 50 cm to 55 cm . He bought a thin fishing line made up of 100% copolymer, but the strength of a fishing line also depends on its diameter «a ».
To find out if the chosen fishing line is suitable for such a type of fish, he uses the diffraction set-up of document 9 by replacing the slit of width «a » by the fishing line of diameter « a », so he obtains a diffraction pattern similar to that shown in document 9 .
The screen is placed at a distance D from the fishing line, the linear width of the central bright fringe is $\mathrm{L}_{1}=13 \mathrm{~mm}$. The screen is displaced by 50 cm away from the fishing line, the linear width of the central bright fringe becomes $L_{2}=19.5 \mathrm{~mm}$.
2.1) Show that $D=1 \mathrm{~m}$.
2.2) Calculate the diameter «a» of the chosen fishing line, knowing that the wavelength of the used light is $\lambda=650 \mathrm{~nm}$.
2.3) Referring to the table in document 10 , specify if the chosen fishing line is suitable for fishing trout fish of size 50 to 55 cm .

Fishing line $(100 \%$ copolymer $)$	Diameter	Use	
Fishing line (1)	0.10 mm	It is suitable to fishing a trout fish of size 35 cm to 40 cm.	
Fishing line (2)	0.18 mm	It is suitable to fishing a trout fish of size 50 cm to 55 cm.	
Fishing line (3)	0.25 mm	It is suitable to fishing a trout fish of size 65 cm to 70 cm.	
\quadhttps://www.truitesaquaponiques.com/			

Exercise 1 (5 pts)	Motion on a slide	
Part	Answer	Mark
1.1	The gravitational potential energy of the system at $\mathrm{B} \mathrm{GPE}_{\text {ground }}=0$ and at $\mathrm{A}, \mathrm{GPE}_{\mathrm{A}}=\mathrm{Mg} \mathrm{h}_{\mathrm{A}}=360 \mathrm{~J}$ $\Delta \mathrm{GPE}=\mathrm{GPE}_{\mathrm{A}}-\mathrm{GPE}_{\mathrm{B}}=360-0=360 \mathrm{~J}$	0.75
1.2	The work done by the weight of the child, when he moves from the ground to the top A: $\mathrm{W}=\mathrm{Mg}\left(\mathrm{h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{f}}\right)=20 \times 10 \times(0-1.8)=-360 \mathrm{~J}$	0.25
1.3	$\mathrm{W}_{\text {weight }}=-\Delta \mathrm{GPE}$	0.25
2.1	$\mathrm{ME}_{\mathrm{A}}=\mathrm{GPE}_{\mathrm{A}}+\mathrm{KE}_{\mathrm{A}}=360 \mathrm{~J}\left(\mathrm{KE}_{\mathrm{A}}=0\right.$ since $\left.\mathrm{V}_{\mathrm{A}}=0\right)$ In the absence of friction, (or the work done by the nonconsevative forces is zero) the mechanical energy of the system is conserved, then $\mathrm{ME}_{\mathrm{B}}=\mathrm{ME}_{\mathrm{A}}=360 \mathrm{~J}$ But $\mathrm{ME}_{\mathrm{B}}=\mathrm{KE}_{\mathrm{B}}+\mathrm{GPE}_{\mathrm{B}} ; \mathrm{GPE}_{\mathrm{B}}=0$ (on reference) So $\frac{1}{2} M_{B}^{2}=360$ therefore $V_{B}=6 \mathrm{~m} / \mathrm{s}$	0.75
2.2	$\Delta \overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{P}_{\mathrm{B}}}-\overrightarrow{\mathrm{P}_{A}} ; \Delta \overrightarrow{\mathrm{P}}=\mathrm{M} \overrightarrow{\mathrm{V}_{B}}-\mathrm{M} \overrightarrow{\mathrm{V}_{A}}$, therefore $\Delta \overrightarrow{\mathrm{P}}=20 \times 6 \overrightarrow{\mathrm{i}}-\overrightarrow{0}$, then $\Delta \overrightarrow{\mathrm{P}}=120 \overrightarrow{\mathrm{i}}$	0.5
2.3	$\Sigma \vec{F}_{\text {ext }}=\mathrm{M} \overrightarrow{\mathrm{g}}+\overrightarrow{\mathrm{N}}$, along $\overrightarrow{\mathrm{i}}: \Sigma \overrightarrow{\mathrm{F}}_{\text {ext }}=$ Mg.sin $\alpha \vec{i}+\overrightarrow{0}=100 \overrightarrow{\mathrm{i}}$	0.5
2.4	$\Delta \overrightarrow{\mathrm{P}}=\Sigma \overrightarrow{\mathrm{F}}_{\text {Ext }} \times \Delta \mathrm{t}_{1}$, so $120 \overrightarrow{\mathrm{i}}=100 \overrightarrow{\mathrm{i}} \times \Delta \mathrm{t}_{1}$, then $\Delta \mathrm{t}_{1}=1.2 \mathrm{~s}$	0.25
3.1	The system (Child, Slide, Earth, Atmosphere) is energetically isolated, So its total energy $E=M E+U=$ constant So, $\Delta \mathrm{U}=-\Delta(\mathrm{ME})$ There is a loss of 25% of ME; so $\Delta(\mathrm{ME})=-0.25 \times \mathrm{ME}_{\mathrm{A}}=-0.25(360)=-90 \mathrm{~J}$: Hence, $\Delta \mathrm{U}=90 \mathrm{~J}$	0.75
3.2	The variation in mechanical energy equals the work of friction: $\begin{aligned} \Delta \mathrm{ME}=\mathrm{W}_{\overrightarrow{\mathrm{f}}} \text { so } \Delta(\mathrm{ME})=-90 & =-\mathrm{f} \times \mathrm{AB}=-\mathrm{f} \times \frac{\mathrm{h}_{\mathrm{A}}}{\sin (\alpha)} \\ -90 & =-\mathrm{f} \times 3.6, \text { thus } \mathrm{f}=25 \mathrm{~N} \end{aligned}$	0.5
3.3	$\begin{aligned} & \Delta \overrightarrow{\mathrm{P}}=\Sigma \overrightarrow{\mathrm{F}}_{\text {ext }} \times \Delta \mathrm{t}_{2}, \Sigma \overrightarrow{\mathrm{~F}}_{\mathrm{Ext}}=(\mathrm{Mg} \cdot \sin \alpha-\mathrm{f}) \overrightarrow{\mathrm{i}}+\overrightarrow{0} \\ & \text { so } 60 \sqrt{3} \overrightarrow{\mathrm{i}}=(100-25) \overrightarrow{\mathrm{i}} \times \Delta \mathrm{t}_{2}, \text { then } \Delta \mathrm{t}_{2}=1.385 \mathrm{~s} \end{aligned}$	0.5

	Exercise 3 (5.5 pts) Characteristics of a coil	
Part	Answer	Mark
1.1	$\mathrm{e}=-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$	0.25
1.2.1	- Statement 1 : During this interval $\mathrm{i}=$ constant, so $\frac{\mathrm{di}}{\mathrm{dt}}=0$ thus $\mathrm{e}=0$, The voltage across the coil $u_{A B}=r i-e=r i$ The coil acts as a resistor of resistance r. - Statement 2 : i varies with time so $\mathrm{e} \neq 0$ therefore e exists this implies that a phenomenon of self-induction appears in the circuit. - Statement 3 : i decreases, then $\mathrm{W}_{\text {mag }}=\frac{1}{2} \mathrm{Li}^{2}$ decreases Or e $. \mathrm{i}>0$, then it acts as a generator	1.5
1.2.2	Between 2 ms and $4 \mathrm{~ms}: \mathrm{e}=10 \mathrm{~V}$ $\begin{aligned} & \frac{\mathrm{di}}{\mathrm{dt}}=\text { slope }=\frac{0-1}{4 \times 10^{-3}-2 \times 10^{-3}}=-500 \mathrm{~A} / \mathrm{s} \\ & \mathrm{e}=-\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}} \text { so }: 10=-\mathrm{L}(-500), \text { thus } \mathrm{L}=0.02 \mathrm{H}=20 \mathrm{mH} \end{aligned}$	0.75
1.2.3	$\begin{aligned} & \mathrm{u}_{\mathrm{AB}}=\mathrm{ri}-\mathrm{e} ; \text { at } \mathrm{t}=3 \mathrm{~ms}:-5=\mathrm{r}(0.5)-10 \\ & 0,5 \mathrm{r}=10-5=5, \text { then } \mathrm{r}=10 \Omega \end{aligned}$	0.5
2.1	$u_{g}=u_{L} ; E=r i+L \frac{d i}{d t} ;$	0.5
2.2	in steady state : $\mathrm{i}=\mathrm{I}_{\mathrm{m}}$; and $\frac{\mathrm{di}}{\mathrm{dt}}=0$ so $E=r I_{m}$, thus $I_{m}=\frac{E}{r}$	0.5
2.3	$\mathrm{I}_{\mathrm{m}}=2 \mathrm{~A} ; 2=\frac{20}{\mathrm{r}}$, then $\mathrm{r}=10 \Omega$	0.25
2.4	$\mathrm{E}=\mathrm{ri}+\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$, then $\frac{\mathrm{di}}{\mathrm{dt}}=\mathrm{E}-\mathrm{ri}$; At $\mathrm{t}_{0}=0: i=0$ then $\left.\frac{\mathrm{di}}{d t}\right)_{\mathrm{t}_{0}=0}=\frac{\mathrm{E}}{\mathrm{L}}$	0.5
2.5	$\begin{aligned} & \text { Slope of the tangent }=\frac{2}{2 \times 10^{-3}}=1000 \mathrm{~A} / \mathrm{s} \\ & \text { But, slop of the tangent } \left.=\frac{\mathrm{di}}{\mathrm{dt}}\right)_{\mathrm{t}_{0}=0}=\frac{\mathrm{E}}{\mathrm{~L}} \end{aligned}$ So, $1000=\frac{20}{\mathrm{~L}}$, then $\mathrm{L}=0.02 \mathrm{H}=20 \mathrm{mH}$	0.75

Exercise 4 (4 pts)	Diameter of a fishing line	
Part	Answer	Mark
1.1	We observe on the screen: \checkmark Alternating bright and dark fringes; \checkmark The central bright fringe is the most intense and has a width double that of the other bright fringes; \checkmark The direction of the fringes is perpendicular to the direction of the slit.	0.75
1.2	$\sin \theta_{1} \approx \theta_{1}=\frac{\lambda}{\mathrm{a}}$	0.25
1.3	$\tan \theta_{1}=\frac{\mathrm{L} / 2}{\mathrm{D}}$, then $\theta_{1}=\frac{\mathrm{L}}{2 \mathrm{D}} ; \quad \frac{\lambda}{\mathrm{a}}=\frac{\mathrm{L}}{2 \mathrm{D}} ; \quad$ thus, $\mathrm{L}=\frac{2 \lambda \mathrm{D}}{\mathrm{a}}$	1
2.1	$\begin{aligned} & \frac{\lambda}{\mathrm{a}}=\frac{\mathrm{L}_{1}}{2 \mathrm{D}_{1}}=\frac{\mathrm{L}_{2}}{2 \mathrm{D}_{2}} ; \frac{\mathrm{L}_{2}}{\mathrm{~L}_{1}}=\frac{\mathrm{D}_{2}}{\mathrm{D}_{1}}=\frac{\mathrm{D}+0.5}{\mathrm{D}} \\ & \frac{\mathrm{~L}_{2}}{\mathrm{~L}_{1}}=\frac{\mathrm{D}+0.5}{\mathrm{D}}, \text { so } \frac{19.5}{13}=\frac{\mathrm{D}+0.5}{\mathrm{D}} \\ & \text { then } 19.5 \mathrm{D}=13 \mathrm{D}+6.5 ; \text { thus } \mathrm{D}=1 \mathrm{~m} \end{aligned}$	1
2.2	$\mathrm{a}=\frac{2 \lambda \mathrm{D}}{\mathrm{L}_{1}}$ then $\mathrm{a}=\frac{2 \times 650 \times 10^{-9} \times 1}{1.3 \times 10^{-2}} ; \quad \mathrm{a}=0.1 \mathrm{~mm}$	0.5
2.3	The chosen line is not suitable to catch the trout fish of size 50 to 55 cm . Because the diameter of the line is less than 0.18 mm .	0.5

