امتحانات الشهادة الثانوية العامة فرع العلوم العامّة

الآسم: الرقم: مسابقة في مادة الفيزياء المدة: ساعتان ونصف

This exam is formed of four obligatory exercises in four pages. The use of non-programmable calculator is recommended.

Exercise 1 (5 pts)

Torsion pendulum

Consider a torsion pendulum (P) formed by:

- a uniform rod AB suspended from its center of mass O to a vertical torsion wire fixed from its upper end to a point O';
- two identical objects, (S₁) and (S₂), taken as particles of same mass m = 200 g. The two particles are fixed on the rod on opposite sides of O at the same adjustable distance « x » from it (Doc. 1).

Neglect the mass of the torsion wire. The wire has a torsion constant C, and the rod AB has a moment of inertia I_0 about an axis (Δ) confounded with (OO').

The rod is rotated from its equilibrium position by an angle θ_m in the horizontal plane, and then it is released from rest.

The rod starts oscillating without friction in a horizontal plane about (Δ). At time t, the angular abscissa of the

rod is θ and its angular velocity is $\theta' = \frac{d\theta}{dt}$.

The horizontal plane containing the rod is taken as a reference level for gravitational potential energy. Given: $\pi^2 = 10$

- 1) Write the expression of the moment of inertia I of (P) about (Δ) in terms of I₀, m, and x.
- 2) Write the expression of the mechanical energy ME of the system [(P), Earth] in terms of I, θ , C, and θ' .
- 3) Determine the differential equation that governs the variation of θ .
- 4) Deduce the expression of the proper (natural) period T_0 in terms of I and C.
- 5) Show that: $T_0^2 = \frac{4\pi^2 I_0}{C} + \frac{8\pi^2 m x^2}{C}$
- 6) We vary the distance x, and we measure the duration of 10 complete oscillations for each value of x. We record the measured values in the table of document 2.

x (cm)	10	15	20	25		
Duration of 10 oscillations (s)	5.83	6.24	6.78	7.41		
T_0 (s)						
T_0^2 (s ²)						
$x^{2} (m^{2})$						
Doc. 2						

- **6.1**) Copy and complete the table of document 2.
- 6.2) Draw on the graph paper the curve that represents T_0^2 as a function of x^2 using the following drawing scale: On the axis of abscissa: $1 \text{ cm} \leftrightarrow 0.01 \text{ m}^2$ On the axis of ordinate: $1 \text{ cm} \leftrightarrow 0.1 \text{ s}^2$
- **6.3**) The shape of this curve can be considered in agreement with the expression of T_0^2 in part (5). Justify.
- 7) Deduce the values of I_0 and C.

Exercise 2 (5 pts)

Period of a simple pendulum

A simple pendulum is formed of a sphere (S), taken as a particle of mass $m_s = 2 \text{ kg}$, suspended from a light inextensible cord of length $\ell = 1 \text{ m}$.

A marble (b) of mass $m_b = 50$ g is launched with a velocity $\vec{V}_1 = 11 \ \vec{i}$ (m/s) along a horizontal x-axis of unit vector \vec{i} , and it makes a head-on collision with (S) initially at rest. Just after the collision, marble (b) recoils horizontally with a velocity $\vec{V}'_1 = -10.46 \ \vec{i}$ (m/s) and (S) starts moving with a horizontal velocity of magnitude V_0 .

The pendulum [Cord , (S)] oscillates without friction in a vertical plane about a horizontal axis (Δ) passing through the upper end O of the cord (Doc. 3).

The purpose of this exercise is to determine the oscillation period of the pendulum for different values of the marble's launch speed.

Take:

- the horizontal plane passing through the lowest position of (S) as a reference level for gravitational potential energy;
- $\sin \theta \cong \theta$ in radians, for $\theta \le 0.175$ rad;
- $g = 10 \text{ m/s}^2$.

1) Collision between (S) and (b)

- **1.1**) Prove that $V_0 = 0.537$ m/s by applying the principle of conservation of linear momentum to the system [(S), (b)].
- **1.2)** Show that this collision is elastic.

2) Maximum deflection of the pendulum

After the collision, the pendulum is deflected by a maximum angle θ_m . Show that $\theta_m = 0.17$ rad.

3) Oscillation of the pendulum

After the collision, the pendulum [Cord, (S)] oscillates in the vertical plane about (Δ). At an instant t, the

angular abscissa of the pendulum is θ and its angular velocity is $\theta' = \frac{d\theta}{dt}$.

The differential equation the governs the variation of θ is: $\theta'' + \frac{g}{\ell} \sin \theta = 0$.

- **3.1**) Deduce that the motion of the pendulum is simple harmonic.
- **3.2**) Deduce the expression of the proper (natural) period T_0 of the oscillations in terms of ℓ and g.
- **3.3**) Calculate the value of T_0 .
- 4) The same experiment is repeated by lunching the marble horizontally with a velocity $\vec{V}_1 = V_1 \vec{i}$, where $V_1 < 11$ m/s. Specify whether the value of the oscillation period of the pendulum increases, decreases or remains the same.

Exercise 3 (5 pts)

Characteristics of a coil

The circuit of document 4 consists of:

- an ideal battery of emf E = 12 V:
- an ohmic conductor of resistance $R = 15 \Omega$;
- a coil of inductance L and resistance r;
- an ammeter (A) of negligible resistance;
- a switch K.

The purpose of this exercise is to determine the values of L and r. At the instant $t_0 = 0$, switch K is closed and the current i in the circuit starts increasing gradually.

At the instant t₁ steady state is attained in the circuit, and ammeter (A) reads a current $I_1 = 0.5$ A.

- 1) The phenomenon of self-induction takes place in the coil between t_0 and t_1 . Explain this phenomenon.
- 2) In steady state, the coil acts as a resistor of resistance r. Justify.
- 3) Show that the resistance of the coil is $r = 9 \Omega$.
- 4) Show that the differential equation that governs the variation of the voltage $u_{CB} = u_R$ is:

$$\frac{\text{RE}}{\text{L}} = \left(\frac{\text{r} + \text{R}}{\text{L}}\right) u_{\text{R}} + \frac{\text{d}u_{\text{R}}}{\text{d}t}$$

- 5) Verify that $u_R = \frac{RE}{r+R} \left(1 e^{-\frac{t}{\tau}} \right)$ is a solution of this differential equation where $\tau = \frac{L}{r+R}$.
- 6) Deduce the expression of the instant t_1 in terms of L, r, and R.
- 7) The curve of document 5 represents u_R as a function of time.
 - (T) is the tangent to the curve u_R at point B (0.024s, 6.82V).
 - 7.1) Calculate the slope of the tangent (T).
 - 7.2) Use document 5 and the differential equation in order to deduce the value of L.

Electromagnetic induction

Two parallel conducting rails, CD and EF, of negligible resistance and separated by a distance $\ell = 15$ cm, are placed in a horizontal plane.

A rigid conducting rod MN, of length ℓ and perpendicular to the rails, may move without friction on the rails. The center of mass G of the rod moves along an x-axis which is parallel to the rails. The resistance of the rod is $R_1 = 0.5$ Ω . The ends C and E of the rails are connected to a resistor of resistance $R_2 = 0.5 \Omega$.

The circuit formed by the two rails and the rod is placed in a vertical uniform magnetic field \vec{B} perpendicular to the plane of the rails and of magnitude B = 0.5 T (Doc. 6). At the instant t₀ = 0, G coincides with the origin O of the

x-axis, and the rod is displaced at a constant velocity \vec{V} in the positive x-direction.

At an instant t, the abscissa of G is $x = \overline{OG} = 2 t$ (x in m and t in s).

- 1) The magnetic flux crossing the closed circuit CNME changes.
 - **1.1**) Indicate the reason behind the change in the magnetic flux crossing this circuit.
 - **1.2)** Explain this statement « The circuit CNME carries an electric current as long as the rod MN is moving ».
- 2) Show that the expression of the magnetic flux crossing the area CNME is $\phi = -0.15$ t (SI).
- **3**) Determine the value of the electromotive force « e » induced in the rod.
- 4) Knowing that $u_{NM} = R_1 i e$, show that the expression of the induced electric current in the circuit CNME is: $i = \frac{e}{1 e}$

ME is:
$$1 = \frac{1}{R_1 + R_2}$$

- 5) Deduce the value and the direction of i.
- 6) An electromagnetic force (Laplace's force) \vec{F} is acting on the moving rod MN.
 - **6.1)** Indicate the direction of this force.
 - **6.2**) Calculate the magnitude F of \vec{F} .
- 7) We move the rod with a constant velocity having the same magnitude as that of \vec{V} but of opposite direction. Indicate in this case the direction and the magnitude of the Laplace force acting on the rod.

امتحانات الشهادة الثانوية العامة فرع العلوم العامّة وزارة التربية والتعليم العالي المديريّة العامّة للتربية دائرة الامتحانات الرسميّة

مسابقة في مادة الفيزياء المدة: ساعتان ونصف

Exer	Exercise 1 (5 pts) Torsion pendulum					
Part		Answer				Mark
1	$I_{[P]/\Delta} = I_{rod/\Delta} + I_{S1/\Delta} + I_{S2/\Delta} = I_0 + mx^2 + mx^2 = I_0 + 2mx^2$				0.25	
2	$ME = \frac{1}{2}I\theta'^2 + \frac{1}{2}C\theta^2$					0.5
3	ME=const , so $\frac{dE_m}{dt} = 0$, then $I\theta'\theta'' + C\theta\theta' = 0$ then $\theta'' + \frac{C}{I}\theta = 0$				0.5	
4	The differential equation is of the form : $\theta'' + \omega_0^2 \theta = 0$, where $\omega_0 = \sqrt{\frac{C}{I}}$ So, $T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{I}{C}}$				0.25 0.25	
5	$T_{0} = 2\pi \sqrt{\frac{I}{C}} = 2\pi \sqrt{\frac{I_{0} + 2mx^{2}}{C}}$ $T_{0}^{2} = \frac{4\pi^{2}I_{0}}{C} + \frac{8\pi^{2}m x^{2}}{C}$				0.25	
6.1	$\begin{array}{c c} x (cm) \\ \hline Duration of 10 oscillations \\ \hline T_0 (s) \\ \hline T_0^2 (s^2) \\ \hline x^2 (m^2) \end{array}$	10 5.83 0.583 0.34 0.01	15 6.24 0.624 0.39 0.022	20 6.78 0.678 0.46 0.04	25 7.41 0.741 0.55 0.06	0.75
6.2	2 $0.9 \xrightarrow{1}{10} 10.9 \xrightarrow{1}{10}$				0.75	
6.3	The curve is a straight line not passing through the origin with a positive slope, so its equation is of the form : $T_0^2 = A x^2 + B$ (A and B are two positive constants). Therefore, the curve is an agreement with the relation $T_0^2 = \frac{4\pi^2 I_0}{C} + \frac{8\pi^2 m x^2}{C}$				0.5	
7	Slop of the curve $=\frac{8\pi^2 m}{C} = \frac{80 \times 0.02}{C} = \frac{0.55 - 0.34}{0.06 - 0.01} = 4.2$, then $C \cong 4$ N.m/rad				0.5	
	By choosing a point on the curve : $I_0 \cong 0.03 \text{ kg} \text{ .m}^2$				0.5	

Exercise 2 (5 pts) Period of a simple pendulum				
Part	Answer	Mark		
1.1	$\vec{P}_{before} = \vec{P}_{after} ; m_b \vec{v}_1 = m_b \vec{v'}_1 + m_s \vec{v}_0$ $m_b \vec{v}_1 - m_b \vec{v'}_1 = m_s \vec{v}_0 ; m_b (\vec{v}_1 - \vec{v'}_1) = m_s \vec{v}_0$ $0.05 (11 \vec{i} + 10.46 \vec{i}) = 2 \vec{v}_0 ; \vec{v}_0 = 0.537 \vec{i} (m/s)$	1		
1.2	$\begin{split} & \text{KE}_{\text{before}} = \frac{1}{2} m_{\text{b}} v_{1}^{2} = \frac{1}{2} \times 0.05 \times 11^{2} = 3.02 \text{ J} \\ & \text{KE}_{\text{after}} = \frac{1}{2} m_{\text{b}} v_{1}^{'2} + \frac{1}{2} m_{\text{S}} v_{0}^{2} = \frac{1}{2} \times 0.05 \times 10.46^{2} + \frac{1}{2} \times 2 \times 0.537^{2} = 3.02 \text{ J} \\ & \text{KE}_{\text{before}} = \text{ KE}_{\text{after}} \text{, then the collision is elastic.} \end{split}$	1		
2	ME is constant, then : $\frac{1}{2}m_{s}v_{0}^{2} = m_{s}g \ell (1 - \cos\theta_{m})$ $\frac{1}{2}(0.537^{2}) = 10 \times 1 \times (1 - \cos\theta_{m}) , \text{ then } \cos\theta_{m} = 0.986 \text{ , so } \theta_{m} = 0.17 \text{ rad}$	1		
3.1	$\theta m \leq 0.175 \text{ rad}$, then $\sin \theta \approx \theta$, so $\theta'' + \frac{g}{\ell} \sin \theta = 0$. The differential equation is of the form : $\theta'' + \omega_0^2 \theta = 0$ with $\omega_0 = \sqrt{\frac{g}{\ell}}$. Then the motion is simple harmonic.	0.5		
3.2	$T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{\ell}{g}}$	0.5		
3.3	$T_0 = 2\pi \sqrt{\frac{1}{10}} = 1.99 \cong 2 \text{ s}$	0.5		
4	$V_1 < 11$ m/s, then $\theta m \le 0.175$ rad, therefore the motion is still simple harmonic, hence $T_0 = 2\pi \sqrt{\frac{\ell}{g}}$ which is independent of V ₁ . Then T ₀ remains the same.	0.5		

Exerci	Exercise 3 (5 pts) Characteristics of a coil				
Part	Answer	Mark			
1	Between t_0 and t_1 , the current increases, then the magnitude of the magnetic field produced inside the coil increases; hence, the coil is crossed by a variable self-flux. Therefore, the coil becomes the seat of induced emf.	0.5			
2	$u_{BA} = ri + L \frac{di}{dt}$ In steady state, $i = I_1$ = constant, then $\frac{di}{dt} = 0$ Then, $u_{BA} = ri$; therefore, the coil acts as a resistor.	0.5			
3	$\begin{split} u_{CA} &= u_{CB} + u_{BA} \text{, then } E = Ri + ri + L\frac{di}{dt} \\ \text{In steady state : } E &= RI_1 + rI_1 \\ I_1 &= \frac{E}{R+r} = \frac{12}{15+r} = 0.5 \text{, then} 15 + r = \frac{12}{0.5} = 24 \text{ , so} r = 9\Omega \end{split}$	0.5			
4	$E = Ri + +ri + L\frac{di}{dt} , \text{ then } E = L\frac{di}{dt} + (R + r)i$ $u_{R} = Ri; \text{ then } i = \frac{u_{R}}{R} \text{ and } \frac{di}{dt} = \frac{1}{R}\frac{du_{R}}{dt}$ So: $E = \frac{L}{R}\frac{du_{R}}{dt} + (R + r)\frac{u_{R}}{R}$ Therefore: $\frac{RE}{L} = \left(\frac{r+R}{L}\right)u_{R} + \frac{du_{R}}{dt}$	1			
5	$u_{R} = \frac{RE}{r+R} (1 - e^{\frac{-t}{\tau}})$ $\frac{du_{R}}{dt} = \frac{RE}{r+R} \times \frac{1}{\tau} \times e^{\frac{-t}{\tau}} = \frac{RE}{r+R} \times \frac{r+R}{L} \times e^{\frac{-t}{\tau}} = \frac{RE}{L} e^{\frac{-t}{\tau}}$ Replace in the differential equation : $\frac{RE}{L} = \left(\frac{r+R}{L}\right) \left(\frac{RE}{r+R} - \frac{RE}{r+R} e^{\frac{-t}{\tau}}\right) + \frac{RE}{L} e^{\frac{-t}{\tau}} , \text{ then } \frac{RE}{L} = \frac{RE}{L} - \frac{RE}{L} e^{\frac{-t}{\tau}} + \frac{RE}{L} e^{\frac{-t}{\tau}}$ Then, $0 = 0$ So, this is a solution for the differential equation .	0.75			
6	$t_1 = 5 \tau = \frac{5L}{r+R}$	0.25			
7.1	slope $=\frac{\Delta u_R}{\Delta t} = \frac{6.82 + 5.187}{0.024 + 0} = 68 \text{ V/s}$	0.5			
7.2	$\frac{RE}{L} = \left(\frac{r+R}{L}\right)u_{R} + \frac{du_{R}}{dt}$ At t = 0.024 s , u _R =6.82V and $\frac{du_{R}}{dt}$ = slope = 68V/s Replace in the differential equation: $\frac{15 \times 12}{L} = \left(\frac{24}{L}\right)6.82 + 68 , then L = 0.24H = 240mH$	1			

Exercise 4 (5 pts) Electromagnetic induction				
]	Part	art Answer		
1	1.1	During its motion, the area swept by the rod changes, then the circuit is crossed by a variable magnetic flux.		
	1.2	During the motion of the rod, the magnetic flux changes, then the rod becomes the seat of emf and the closed circuit carries an induced current.	0.5	
	2	ϕ = B.S. cos (\vec{B} , \vec{n}) = B. (ℓ x). cos(π) = 0,5×0,15 × 2 t = -0.15 t.		
	3	$e = -\frac{d\phi}{dt} = 0.15 V$	0.75	
	4	$u_{NM} = R_{1}i - e = u_{CE} = -R_{2}i, \text{ then } e = (R_{1} + R_{2})i, \text{ so } i = \frac{e}{R_{1} + R_{2}}$ $\frac{or}{u_{NM}} = u_{CB} + u_{EC} + u_{CN} = 0$ $R_{1}i - e + 0 + R_{2}i + 0 = 0, \text{ then } i = \frac{e}{R_{1} + R_{2}}$	0.5	
	5	$i = \frac{e}{R_1 + R_2} = \frac{0.15}{1} = 0.15A$ i > 0, then the circuit carries a current in the chosen positive sense (clockwise)	0.5 0.5	
6	6.1	direction : to the left	0.25	
	6.2	$F = i B \ell sin(\pi/2) = 0.15 \times 0.5 \times 0.15 \times 1 = 0.011 N$	0.5	
	7	Direction: to the right Value : F = 0.011 N	0.25 0.25	