دورة الـعام 2017 العاديّة السبت 17 حزيران 2017		امتحانات الثشهادة الثانوية العامة الفرع. علوم عامة	
			المديرية العامه للتربية دائرة الامتحانات الرسميّة
	الالاسم:	مسابقة في مادة الفيزياء المدة: ثُلاث ساعات	

This exam is formed of four exercises in four pages. The use of non-programmable calculator is recommended.

Exercise 1 (8 points) Determination of the moment of inertia of a pottery vase The aim of this exercise is to determine the moment of inertia of a pottery vase about two different axis of rotation. The vase has a mass $\mathrm{m}=2 \mathrm{~kg}$ and center of mass G.
1- Moment of inertia of the vase about a horizontal axis
We suspend the vase from a point O , such that the vase is a compound pendulum which can oscillate freely, without friction, about a horizontal axis (Δ) passing through O (Doc 1).
The moment of inertia of the vase about (Δ) is I.
At equilibrium, the center of mass of the vase is in the position G_{0}, directly below the suspension point $\mathrm{O}\left(\mathrm{OG}=\mathrm{OG}_{0}=\mathrm{a}=24 \mathrm{~cm}\right)$.
The vase is displaced from its stable equilibrium position by a small angle

$\theta_{\mathrm{m}}=0.16 \mathrm{rad}$, and then it is released from rest.
Document 2 is a simplified diagram of the compound pendulum at an instant t.
At the instant t, the angular abscissa of G is $\theta=\left(\overrightarrow{\mathrm{OG}_{0}}, \overrightarrow{\mathrm{OG}}\right)$ and the algebraic value of its angular velocity is $\theta^{\prime}=\frac{\mathrm{d} \theta}{\mathrm{dt}}$.
The horizontal plane passing through G_{0} is taken as a gravitational potential energy reference.
Neglect air resistance.
Given: $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$; for small angles: $\cos \theta=1-\frac{\theta^{2}}{2}$ and $\sin \theta=\theta$ (θ in rad).

1-1) Determine, at an instant t, the expression of the mechanical energy of the system (pendulum - Earth) in terms of I, a, g, m, θ and θ^{\prime}.
1-2) Establish the differential equation in θ that describes the motion of the pendulum.
1-3) The solution of the obtained differential equation is: $\theta=\theta_{\mathrm{m}} \sin \left(\omega_{0} \mathrm{t}+\varphi\right) . \theta_{\mathrm{m}}, \varphi$ and ω_{0} are constants.
1-3-1) Determine the expression of the proper angular frequency ω_{0}.
1-3-2) Deduce the expression of the proper period T_{0} of the oscillations of the pendulum in terms of I, m, g and a .
1-4) The pendulum completes 9 oscillations in 25.2 seconds.
1-4-1) Calculate the proper period T_{0} of the oscillations.
1-4-2) Deduce the value of I.
1-5) An appropriate device measures the angular speed of the pendulum. The angular speed of the pendulum when it passes in its equilibrium position is $\theta^{\prime}{ }_{e q}=0.36 \mathrm{rad} / \mathrm{s}$. Apply the principle of conservation of mechanical energy for the system (pendulum, Earth) to determine again the value of I.

2- Moment of inertia of the vase about a vertical axis

Consider a horizontal turntable rotating clockwise at an angular speed of $\theta_{\mathrm{t}}^{\prime}=0.7 \mathrm{rad} / \mathrm{s}$ about a vertical axis (Δ^{\prime}) passing through its center of mass. The mass of the table is $M=20 \mathrm{~kg}$ and its radius is $R=50 \mathrm{~cm}$.
Slowly, we put the vase on the rim of the turntable.
The system (turntable - vase) rotates clockwise with an angular speed of $\theta_{\text {system }}^{\prime}=0.45 \mathrm{rad} / \mathrm{s}$.
The moment of inertia of the table about $\left(\Delta^{\prime}\right)$ is: $\mathrm{I}_{\mathrm{t}}=\frac{1}{2} \mathrm{MR}^{2}$.
The moment of inertia of the vase about (Δ^{\prime}) is I'.
2-1) Name the external forces acting on the system (turntable-vase).

2-2) Show that the angular momentum σ, about (Δ^{\prime}), of the system (turntable- vase) is conserved.
2-3) Deduce the value of I'.

Exercise 2 ($71 / 2$ points)

Sodium atom

Document 1 represents some of the energy levels of the sodium atom.
Given: $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s} ; \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$;
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} ; 1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$.
The aim of this exercise is to study the excitation and the de-excitation of the sodium atom.

1- Excitation of the sodium atom

Consider a sample of sodium atoms, initially in the ground state. This sample is illuminated by white light that contains all the visible radiations: $0.4 \mu \mathrm{~m} \leq \lambda_{\text {visible }} \leq 0.8 \mu \mathrm{~m}$.
1-1) Using document 1 , show that the energy of the sodium atom is quantized.
1-2) Determine, in eV , the maximum energy and the minimum energy of the photons in the white light.
1-3) Using document 1 , show that white light is not capable to ionize the sodium atom.
1-4) Determine, in nm, the wavelength of the photon that excites the sodium atom to the first excited state.

Doc. 1

2- De-excitation of the sodium atom

The emission spectrum, obtained from the low-pressure sodium vapor lamp, contains two very close yellow lines of wavelengths $\lambda_{1}=589.0 \mathrm{~nm}$ and $\lambda_{2}=589.6 \mathrm{~nm}$, called the D-doublet of sodium.
2-1) The sodium atom de-excites from the energy level E_{n} to the ground state and emits the photon of wavelength $\lambda_{1}=589.0 \mathrm{~nm}$. Specify the value of E_{n} in eV .
2-2) The sodium atom undergoes a transition from the energy level E_{3} to the energy level E_{1}. During this transition it loses energy $\mathrm{E}_{3 \rightarrow 1}$ and its mass decreases by $\Delta \mathrm{m}$.
2-2-1) Calculate, in MeV , the value of $\mathrm{E}_{3 \rightarrow 1}$.
2-2-2) Deduce, in u, the value of $\Delta \mathrm{m}$.
2-3) The power of the radiations of wavelengths λ_{1} and λ_{2} emitted by the sodium vapor lamp is $\mathrm{P}=6 \mathrm{~W}$.
The power P_{1} of the radiation of wavelengths λ_{1} is twice the power P_{2} of the radiation of wavelengths λ_{2}.
2-3-1) Show that $P_{1}=4 \mathrm{~W}$.
2-3-2) Determine the number of photons of the radiation of wavelength λ_{1} emitted from the sodium vapor lamp in one second.

Document 1 shows the set-up of Young's double- slit experiment. (OI) is the perpendicular bisector to [$\mathrm{S}_{1} \mathrm{~S}_{2}$].
A point source S, emitting a monochromatic light of wavelength $\lambda=500 \mathrm{~nm}$ in air, is placed in front of the two slits S_{1} and S_{2}.
P is a point on the interference pattern on a screen (E), and it has an abscissa $x=\overline{\mathrm{OP}}$ relative to the origin O of the x -axis. The distance between S_{1} and S_{2} is "a", and the distance between the plane of the slits and the screen (E) is D.
Given: $\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}=\frac{\mathrm{ax}}{\mathrm{D}}$.
The optical path difference at the point P is $\delta=\mathrm{SS}_{2} \mathrm{P}-\mathrm{SS}_{1} \mathrm{P}$.
The aim of this exercise is to determine "a" and D.

Doc. 1

1- S is placed on the line (IO) as shown in document 1 . In this case the optical path difference at the point P is

$$
\delta=\frac{\mathrm{ax}}{\mathrm{D}}
$$

1-1) Show that the point O is the center of the central bright fringe.
1-2) Determine the expression of the abscissa of the center of the $\mathrm{k}^{\text {th }}$ dark fringe.
1-3) Deduce the expression of the inter-fringe distance i, in terms of a, λ and D .
1-4) An appropriate device records the intensity of the light received from S on the screen (E) as a function of x. The graph of document 2 shows the intensity as a function of x between two points A and B.
Refer to document 2 :
1-4-1) indicate the number of bright fringes between A and B;
1-4-2) give the expression of the distance $A B$ in terms of the inter-fringe distance i;
1-4-3) indicate the order and nature of the fringe whose center is the point B;
1-4-4) give the abscissa of the center of the first dark fringe on the positive side of O .

Doc. 2
1-5) Deduce that $\mathrm{D}=4000$ a (in SI units).
2- The point source S which is placed at a distance "d" from the plane of the slits is moved by a displacement z to the side of S_{1} in a direction perpendicular to (IO) and normal to the slits.
Given: $\mathrm{SS}_{2}-\mathrm{SS}_{1}=\frac{\mathrm{az}}{\mathrm{d}}$.
2-1) Prove that the optical path difference of the point P is $\delta=\frac{a z}{d}+\frac{a x}{D}$.
2-2) Deduce the expression of the abscissa of the center of the central bright fringe.
2-3) We notice that the center of the central bright fringe coincides with the position that was occupied by the center of the $10^{\text {th }}$ bright fringe, on the negative side of O , before the displacement of S . Given: $\mathrm{d}=40 \mathrm{~cm}$ and $\mathrm{z}=0.4 \mathrm{~cm}$.
Determine the values of a and D .

Exercise 4 ($71 / 2$ points)

Characteristics of a coil

The aim of this exercise is to determine the characteristics of a coil. For this aim, consider the circuit of document 1 which includes a coil of inductance L and resistance r, an initially neutral capacitor of capacitance C, an ideal DC generator of e.m.f E, a resistor of resistance R, a double switch K, and an ammeter (A) of negligible resistance.

1- First experiment

K is put at position (1) at $\mathrm{t}_{0}=0$. The ammeter (A) indicates a current i which increases from zero to its maximum value $\mathrm{I}_{0}=0.1 \mathrm{~A}$ and the steady state is attained.

1-1) Name the phenomenon that takes place in the coil during the growth of the current.
1-2) Determine, using the law of addition of voltages, the expression of I_{0} in terms of E, R and r .

1-3) A suitable device allows us to record the voltage $u_{P B}$ between the terminals of the coil as a function of time as indicated by the curve of document 2.
1-3-1) Applying the law of addition of voltages, and using the curve of document 2 , show that $\mathrm{E}=4.5 \mathrm{~V}$.
1-3-2) Using document 2, prove, without calculation that the value of r is not zero.
1-3-3) Deduce that $\mathrm{r}=15 \Omega$.
1-4) Show that $R=30 \Omega$.
1-5) Establish, by applying the law of addition of voltages, the differential equation that describes the variation of the current i as a function of time.
1-6) The solution of this differential equation has the form:
 $\mathrm{i}=\mathrm{I}_{0}\left(1-\mathrm{e}^{\frac{-t}{\tau}}\right)$, where τ is constant.
1-6-1) Determine the expression of τ in terms of L, r and R.
1-6-2) Determine at $t=\tau$ the value of the voltage $u_{R}=u_{M N}$ across the resistor.
1-6-3) Show, at $t=\tau$, that the voltage across the coil is $u_{P B}=2.61 \mathrm{~V}$.
1-6-4) Deduce, using document 2 , the value of τ.
1-7) Calculate the value of L.

2- Second experiment

When the steady state of the current in the coil is attained $\left(\mathrm{i}=\mathrm{I}_{0}\right), \mathrm{K}$ is moved abruptly from position (1) to position (2) at an instant $\mathrm{t}_{0}=0$ taken as a new origin of time. The electromagnetic energy in the circuit at an instant t is $\mathrm{E}_{\mathrm{em}}=\mathrm{E}_{\text {electric }}+\mathrm{E}_{\text {magnetic }}$.
An appropriate device allows us, to trace the curve of the electromagnetic energy as a function of time and the tangent to this curve at $t_{0}=0$ (Doc. 3).

2-1) Using document 3 , indicate the value of $\mathrm{E}_{\text {em }}$ at $\mathrm{t}_{0}=0$.
2-2) Deduce the value of L .
2-3) Calculate the slope of the above tangent.
2-4) Deduce the value of r, knowing that $\frac{\mathrm{dE}_{\mathrm{em}}}{d t}=-\mathrm{ri}^{2}$.

أسس التصحيح	امتحانات الثهادة الثانوية العامة الفرع: علوم عامة ـ فيزياء	وزارة التربية والتعليم العالبي المديرية العامة للتربية دائرة الامتحـانـات

Exercise 1 (8 points)

Part			Answer	Mark
	1-1		GPE $=m g h_{G}$. But $h_{G}=G H=a-a \cos \theta$, where $a=O G=\mathrm{OG}_{\mathrm{o}}$ Then $\mathbf{G P E}=\mathbf{m g a}(\mathbf{1}-\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }})$. θ_{m} is small , so $\cos \theta=1-\frac{\theta^{2}}{2}$, then GPE $=\frac{1}{2} \mathrm{mga} \theta^{2}$ $\mathrm{ME}=\mathrm{KE}+\mathrm{GPE}, \text { then } \quad \mathrm{ME}=\frac{1}{2} \mathrm{I} \theta^{\prime 2}+\frac{1}{2} \mathrm{mg} \mathrm{a} \theta^{2}$	1
	1-2		The pendulum oscillates without friction and air resistance is neglected, so the sum of works of non conservative forces is zero, then the mechanical energy of the system is conserved. $\mathrm{ME}=\frac{1}{2} \mathrm{I} \theta^{\prime 2}+\frac{1}{2} \mathrm{mgag} \theta^{2}=\mathrm{constant} \text {, then } \frac{\mathrm{d} \mathrm{ME}}{\mathrm{dt}}=0,$ thus $2\left(\frac{1}{2} \mathrm{I}^{\prime} \theta^{\prime \prime}\right)+2\left(\frac{1}{2} \mathrm{mg} \mathrm{a} \theta^{\prime}\right)=0 \Rightarrow \theta^{\prime}\left(\mathrm{I} \theta^{\prime \prime}+\operatorname{mga} \theta\right)=0$. But $\theta^{\prime}=0$ is rejected, therefore: $\quad \theta^{\prime \prime}+\frac{\mathrm{mga}}{\mathrm{I}} \theta=0 \quad 2^{\text {nd }}$ order differential equation in θ.	1
	1-3	1-3-1	$\begin{aligned} & \theta=\theta_{\mathrm{m}} \sin \left(\omega_{\mathrm{o}} \mathrm{t}+\varphi\right), \text { then } \theta^{\prime}=\omega_{0} \theta_{\mathrm{m}} \cos \left(\omega_{\mathrm{o}} \mathrm{t}+\varphi\right) \\ & \theta^{\prime \prime}=-\omega_{\mathrm{o}}^{2} \theta_{\mathrm{m}} \sin \left(\omega_{\mathrm{o}} \mathrm{t}+\varphi\right)=-\omega_{\mathrm{o}}^{2} \theta \end{aligned}$ Substitute $\theta^{\prime \prime}$ in the differential equation: $-\omega_{o}{ }^{2} \theta+\frac{\mathrm{mga}}{\mathrm{I}} \theta=\theta\left(-\omega_{\mathrm{o}}{ }^{2}+\frac{\mathrm{mga}}{\mathrm{I}}\right)=0$ $\theta=0$ is rejected, then $\omega_{0}{ }^{2}=\frac{\mathrm{mga}}{\mathrm{I}}$, therefore $\omega 0=\sqrt{\frac{\mathrm{mga}}{\mathrm{I}}}$	0.75
		1-3-2	$\mathrm{T}_{\mathrm{o}}=\frac{2 \pi}{\omega_{\mathrm{o}}} \quad$, then $\mathrm{T}_{\mathrm{o}}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mga}}}$	0.5
	1-4	1-4-1	$\mathrm{T}_{\mathrm{o}}=\frac{25.2}{9} \quad$, thus $\mathrm{T}_{\mathrm{o}}=2.8 \mathrm{~s}$	0.5
		1-4-2	$\mathrm{T}_{\mathrm{o}}=\frac{2 \pi}{\omega_{\mathrm{o}}}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mga}}}$, then $\mathrm{T}_{\mathrm{o}}^{2}=\frac{4 \pi^{2} \mathrm{I}}{\mathrm{mga}} ; 2.8^{2}=\frac{4 \times 3.14^{2} \times \mathrm{I}}{2 \times 10 \times 0.24} \quad$, therefore $\mathrm{I}=0.95 \mathrm{~kg} . \mathrm{m}^{2}$	0.75
	1-5		M.E $=\frac{1}{2} \mathrm{I} \theta_{\mathrm{m}}^{\prime 2}=\frac{1}{2} \mathrm{mgat} \theta_{\mathrm{m}}^{2} ; \mathrm{I} \times 0.36^{2}=2 \times 10 \times 0.24 \times 0.16^{2} ; \mathrm{I}=0.95 \mathrm{~kg} . \mathrm{m}^{2}$.	1
		2-1	System: (Turntable - vase). External forces: the weight $\mathbf{M g}$ of the turntable ; the weight mg of the vase ; and the reaction \vec{R} at the axle of rotation	0.5
	2-2		Moments relative to (Δ): $\mathrm{M}_{\overrightarrow{\mathrm{R}}}=\mathrm{M}_{\mathrm{Mg}}=0$ since these forces are passing through the axis of rotation $M_{m \vec{g}}=0$, since this force is parallel to the axis of rotation. $\sum \mathrm{M}=\mathrm{M}_{\mathrm{m} \overrightarrow{\mathrm{g}}}+\mathrm{M}_{\overrightarrow{\mathrm{R}}}+\mathrm{M}_{\mathrm{Mg}}=0$. But $\sum \mathrm{M}=\frac{\mathrm{d} \sigma}{\mathrm{dt}}$, then $\frac{\mathrm{d} \sigma}{\mathrm{dt}}=0$. Therefore $\sigma=$ constant..	1
	2-3		$\mathrm{I}_{\mathrm{t}}=\frac{1}{2} \mathrm{M} \mathrm{R}^{2}=\frac{1}{2} \times 20 \times 0.5^{2}=2.5 \mathrm{~kg} \cdot \mathrm{~m} 2$ The angular momentum of the system is conserved, then $\sigma_{\text {initial }}=\sigma_{\text {final }}$ $\mathrm{I}_{\mathrm{t}} \theta_{\mathrm{t}}^{\prime}+0=\left(\mathrm{I}^{\prime}+\mathrm{I}_{\mathrm{t}}\right) \theta_{\text {system }}^{\prime}, \text { so } 2.5 \times 0.7=\left(\mathrm{I}^{\prime}+2.5\right)(0.45), \text { then } \mathrm{I}^{\prime}=1.39 \mathrm{~kg} \cdot \mathrm{~m}^{2}$	1

Exercise 2 (7.5 points)

Part			Answer	Mark
1-1			Each energy level has a specific value, therefore the energy of the atom is quantized.	0.5
1-2			$\mathrm{E}_{\mathrm{ph}}=\frac{\mathrm{hC}}{\lambda}$; E_{ph} max if λ is minimum ; $\begin{aligned} & \mathrm{E}_{\mathrm{ph}(\text { max })}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{0.4 \times 10^{-6}}=4.95 \times 10^{-19} \mathrm{~J}=3.093 \mathrm{eV} \\ & \mathrm{E}_{\mathrm{ph}(\text { min })}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{0.8 \times 10^{-6}}=2.475 \times 10^{-19} \mathrm{~J}=1.546 \mathrm{eV} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
	1-3		$\begin{aligned} & \mathrm{W}_{\text {ion }}=\mathrm{E}_{\infty}-\mathrm{E}_{1}=0-(-5.14)=5.14 \mathrm{eV}, \\ & \mathrm{E}_{\mathrm{ph}(\max)}=3.093 \mathrm{eV}<\mathrm{W}_{\text {ion }}=5.14 \mathrm{eV} \end{aligned}$ Therfore the white light cannot ionize the atom	1
	1-4		$\begin{aligned} & \mathrm{E}_{\mathrm{ph}}=\mathrm{E}_{2}-\mathrm{E}_{1}, \text { then } \frac{\mathrm{hC}}{\lambda}=-3.04+5.14=2.1 \mathrm{eV}=3.36 \times 10^{-19} \mathrm{~J} \\ & \lambda=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{3.36 \times 10^{-19}}=0.589 \times 10^{-6} \mathrm{~m}=589 \mathrm{~nm} . \end{aligned}$	1
	2-1		$E_{n}=E_{2}=-3.04 \mathrm{eV}$ since this photon excites the atom from E_{1} to E_{2} so it is emitted when the atom $\begin{aligned} & \text { OR : } E_{n}-E_{1}=E_{\text {photon }} ; E_{\text {photon }}=\frac{h c}{\lambda}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{589 \times 10^{-9} \times 1.6 \times 10^{-19}}=2.1 \mathrm{eV} \\ & \mathrm{E}_{\mathrm{n}}-=\mathrm{E}_{\text {photon }}+\mathrm{E}_{1}=2.1-5.14=-3.04 \mathrm{eV} \end{aligned}$	1
	2-2	2-2-1	$\mathrm{E}_{3 / 1}=\mathrm{E}_{3}-\mathrm{E}_{1}=3.21 \mathrm{eV}=3.21 \times 10^{-6} \mathrm{MeV}$.	0.75
		2-2-2	$\begin{aligned} & \mathrm{E}_{3 / 1}=\Delta \mathrm{mc}^{2} \\ & \Delta \mathrm{~m}=\frac{3.21 \times 10^{-6}}{931.5}=3.446 \times 10^{-9} \mathrm{u} . \end{aligned}$	0.75
	2-3	2-3-1	$\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$ But $\mathrm{P}_{1}=2 \mathrm{P}_{2}$, then $\mathrm{P}=3 \mathrm{P}_{2}$, thus $\mathrm{P}_{2}=2 \mathrm{~W}$ and $\mathrm{P}_{1}=4 \mathrm{~W}$.	0.5
		2-3-2	$\mathrm{P}_{1}=\frac{\mathrm{nE}}{\mathrm{t}} \mathrm{t} \text { then } \mathrm{n}=\frac{\mathrm{t} \times \mathrm{P}_{1}}{\mathrm{E}_{1}}=\frac{1 \times 4}{3.36 \times 10^{-19}}=1.19 \times 10^{19} \text { photons. }$	1

Exercise 3 (7 points)

Interference of light

Part			Answer	Mark
1		1-1	At $\mathrm{O}, \mathrm{x}=0$, then $\delta_{\mathrm{O}}=0$, then O is the center of the central bright fringe.	0.5
		1-2	Dark fringe: $\delta=(2 \mathrm{k}+1) \frac{\lambda}{2}, \mathrm{k} \in \mathrm{Z}$, then $(2 \mathrm{k}+1) \frac{\lambda}{2}=\frac{\mathrm{ax}}{\mathrm{D}}$ thus $\mathrm{x}=\frac{(2 \mathrm{k}+1) \lambda \mathrm{D}}{2 \mathrm{a}}$	0.75
		1-3	$\mathrm{i}=\mathrm{x}_{\mathrm{K}+1}-\mathrm{x}_{\mathrm{K}}=(2(\mathrm{k}+1)+1) \frac{\lambda \mathrm{D}}{2 \mathrm{a}}-(2 \mathrm{k}+1) \frac{\lambda \mathrm{D}}{2 \mathrm{a}}=\frac{\lambda \mathrm{D}}{\mathrm{a}}$	0.5
	1-4	1-4-1	5 dark fringes	0.5
		1-4-2	$\mathrm{AB}=5 \mathrm{i}$	0.5
		1-4-3	B is the center of the third dark fringe on the positive side of O .	0.5
		1-4-4	First dark fringe $\mathrm{x}_{1}=1 \mathrm{~mm}$	0.5
	1-5		$\mathrm{x}_{1}=\frac{(2 \mathrm{k}+1) \lambda \mathrm{D}}{2 \mathrm{a}}, \mathrm{k}=0$, then $\mathrm{D}=\frac{2 \mathrm{x}_{1}}{\lambda} \mathrm{a}=\frac{2 \times 1 \times 10^{-3}}{500 \times 10^{-9}} \mathrm{a}$, therefore $\mathrm{D}=4000 \mathrm{a}$. Or: $\mathrm{x}_{\mathrm{B}}=\frac{(2 \mathrm{k}+1) \lambda \mathrm{D}}{2 \mathrm{a}}, \mathrm{k}=2$, then $\mathrm{D}=\frac{2 \mathrm{x}_{\mathrm{B}}}{5 \lambda} \mathrm{a}=\frac{2 \times 5 \times 10^{-3}}{5 \times 500 \times 10^{-9}} \mathrm{a}$, therefore $\mathrm{D}=4000 \mathrm{a}$.	0.75
2	2-1		$\delta=\mathrm{SS}_{2} \mathrm{P}-\mathrm{SS}_{1} \mathrm{P}=\left(\mathrm{SS}_{2}-\mathrm{SS}_{1}\right)+\left(\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}\right)=\frac{\mathrm{az}}{\mathrm{d}}+\frac{\mathrm{ax}}{\mathrm{D}}$.	0.5
	2-2		Central bright fringe : $\delta=0$, then $0=\frac{a Z}{d}+\frac{a x}{D}$. $x=-\frac{Z D}{d}$	0.5
	2-3		$10^{\text {th }}$ bright fringe, then : $x=-10 i=-10 \frac{\lambda D}{a}=-\frac{Z D}{d}$ $\begin{aligned} & \mathrm{a}=\frac{10 \lambda \mathrm{~d}}{\mathrm{z}}=5 \times 10^{-4} \mathrm{~m} \\ & \mathrm{D}=4000 \mathrm{a}=2 \mathrm{~m} \end{aligned}$	1.5

Exercise 4 (7.5 points)

Characteristics of coil

Part			Answer	Mark
1	1-1		Self electromagnetic induction.	0.25
	1-2		Law of addition of voltage: $u_{M B}=u_{M N}+u_{N}$, then $r i+L \frac{d i}{d t}+R i=E$ At steady state: $\mathrm{i}=\mathrm{I}_{0}=$ constant, thus $\frac{\mathrm{di}}{\mathrm{dt}}=0$, therefore $\mathrm{I}_{0}=\frac{\mathrm{E}}{\mathrm{r}+\mathrm{R}}$	0.75
	1-3	1-3-1	$\mathrm{At}=0: \mathrm{i}=0$ then $\mathrm{u}_{\mathrm{R}}=0$, then $\mathrm{E}=\mathrm{u}_{\mathrm{R}}+\mathrm{u}_{\text {coil }}$ from graph $\mathrm{E}=4.5 \mathrm{~V}$.	0.5
		1-3-2	At steady state: $\frac{\mathrm{di}}{\mathrm{dt}}=0$, then $\mathrm{u}_{\text {coil }}=0+\mathrm{rI}_{0} ;$ graphically : $\mathrm{u}_{\text {coil }} \neq 0$ then $; \mathrm{r} \neq 0$	0.5
		1-3-3	$\mathrm{rI}_{0}=1.5 \mathrm{~V}$, then $\mathrm{r}=15 \Omega$.	0.5
	1-4		$\mathrm{I}_{0}=\frac{E}{r+R_{0}}$, then $\mathrm{R}_{0}=-\mathrm{r}+\mathrm{E} / \mathrm{I}_{0}=30 \Omega$.	0.5
	1-5		$u_{\mathrm{MB}}=\mathrm{u}_{\mathrm{MN}}+\mathrm{u}_{\mathrm{N}}, \text { thus } \mathrm{ri}+\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{Ri}=\mathrm{E} ;(\mathrm{r}+\mathrm{R}) \mathrm{i}+\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=\mathrm{E}$	0.5
	1-6	1-6-1	$\begin{aligned} & \frac{d i}{d t}=\frac{I_{0}}{\tau} e^{-\frac{t}{\tau}}, \text { then } E=\left(r+R_{0}\right)\left(I_{0}-I_{0} e^{-\frac{t}{\tau}}\right)+L \frac{I_{0}}{\tau} e^{-\frac{t}{\tau}} \\ & \text { thus: } \quad \tau=\frac{L}{r+R_{0}} \end{aligned}$	0.75
		1-6-2	$\mathrm{At}=\tau: \mathrm{i}=0.63 \mathrm{I}_{0}=0.063 \mathrm{~A}$, then $\mathrm{u}_{\mathrm{R}}=\mathrm{Ri}=1.89 \mathrm{~V}$	0.75
		1-6-3	$\mathrm{u}_{\text {coil }}=\mathrm{E}-\mathrm{u}_{\mathrm{R}}=2.61 \mathrm{~V}$	0.25
		1-6-4	Graphically $\tau=1 \mathrm{~ms}$	0.25
		-7	$\mathrm{L}=\tau\left(r+R_{0}\right)=0.045 \mathrm{H}$.	0.5
2		-1	$\mathrm{E}_{\text {em }}=2.25 \times 10^{-6} \mathrm{~J}$	0.25
		-2	$\frac{1}{2} L L_{0}^{2}=2.25 \times 10^{-6}$, therefore $\mathrm{L}=0.045 \mathrm{H}$	0.5
		-3	Slope $=-2.25 \times 10^{-4} / 1.5 \times 10^{-3}=-0.15 \mathrm{~J} / \mathrm{s}$	0.5
		-4	Slope $=-\mathrm{r} I_{0}^{2}$, therefore $\mathrm{r}=15 \Omega$.	0.25

