

This exam is formed of four exercises in four pages.

The use of non-programmable calculator is recommended.

First exercise: (7.5 points)

Charging and Discharging of a Capacitor

The aim of this exercise is to study the charging and the discharging of a capacitor of capacitance $C=1 \mu \mathrm{~F}$. For that we connect the circuit of figure 1 which is formed of the capacitor, an ideal generator of constant voltage E, a resistor of resistance R and a double switch (K).
Take the direction of the current as a positive direction.
A - Charging of the capacitor
The capacitor is initially neutral and the switch (K) is turned to position (1) at the instant $t_{0}=0$.
A convenient apparatus records the variation of the voltage $u_{C}=u_{B M}$ across the terminals of the capacitor as a function of time.

1) Derive the differential equation that describes the variation of the voltage u_{c} as a function of time.
2) The solution of the differential equation is given by:
$u_{C}=A+B e^{-\frac{t}{\tau}}$, where A, B and τ are constants. Determine the expressions of these constants in terms of R, C and E.
3) Figure 2 shows the variation of u_{C} as a function of time t. The straight line OT represents the tangent to the curve $u_{C}(t)$ at $t_{0}=0$.
a) Determine the value of τ.
b) Deduce the values of E and R .

B - Discharging of the capacitor

The charging of the capacitor being completed, the switch (K) is turned to position (2) at a new origin of time $\mathrm{t}_{0}=0$.
At an instant t the circuit carries a current i.

1) Redraw the figure of the discharging circuit and indicate on it the direction of the current i.
2) Show that the differential equation in i has the form:

Fig. 2 $\mathrm{i}+\mathrm{RC} \frac{\mathrm{di}}{\mathrm{dt}}=0$.
3) Verify that $i=I_{0} e^{-\frac{t}{\tau}}$ is a solution of this differential equation, where $I_{0}=\frac{E}{R}$.
4) a) Calculate the value of i at $t_{0}=0$ and at $t_{1}=2.5 \tau$.
b) Deduce the value of u_{C} at $t_{1}=2.5 \tau$.
5) Determine the electric energy W_{e} lost by the capacitor between $\mathrm{t}_{0}=0$ and $\mathrm{t}_{1}=2.5 \tau$.
6) The energy dissipated due to joule's effect in the resistor between t_{0} and t_{1}, is given by $W_{h}=\int_{t_{0}}^{t_{1}} R i^{2} d t$.
a) Determine the value of W_{h}.
b) Compare W_{h} and W_{e}. Conclude.

Second exercise: (7.5 points)

Determination of the inductance of a coil and the capacitance of a capacitor

The aim of this exercise is to determine the inductance L of a coil of negligible resistance and the capacitance C of a capacitor.
For this aim we perform two experiments:

A - First experiment

In this experiment, we set up the circuit represented in figure 1. This series circuit is composed of: a resistor $\left(D_{1}\right)$ of resistance $\mathrm{R}_{1}=25 \Omega$, the coil of inductance L and of negligible resistance and an (LFG) maintaining across its terminals an alternating sinusoidal voltage of expression:
 $\mathrm{u}_{\mathrm{AB}}=\mathrm{U}_{\mathrm{m}} \sin \omega \mathrm{t} \quad\left(\mathrm{u}_{\mathrm{AB}}\right.$ in V , t in s$)$.
The circuit thus carries an alternating sinusoidal current i_{1}.
An oscilloscope is used to display the variation, as a function of time, of the voltage u_{AB} on channel $\left(\mathrm{Y}_{1}\right)$ and the voltage $u_{D B}$ on channel $\left(\mathrm{Y}_{2}\right)$.
The adjustments of the oscilloscope are:

- vertical sensitivity for the both channels: $1 \mathrm{~V} / \mathrm{div}$;
- horizontal sensitivity: $1 \mathrm{~ms} / \mathrm{div}$.

1) Redraw figure (1) and show on it the connections of the oscilloscope.
2) The obtained waveforms are represented on figure (2).
a) The waveform (a) represents $u_{A B}$. Justify.
b) Using the waveforms of figure (2), determine:
i) the angular frequency ω of the voltage u_{AB};
ii) the maximum value U_{m} and $U_{m 1}$ of the voltages $u_{A B}$ and $u_{D B}$ respectively;
iii) the phase difference between $u_{A B}$ and $u_{D B}$.
3) a) Write the expression of the voltage $u_{D B}$ as a function of

Fig. 2 time.
b) Deduce that $\mathrm{i}_{1}=0.1 \sin \left(\omega \mathrm{t}-\frac{\pi}{4}\right) \quad$ (i_{1} in A, t in s$)$.
4) Determine the value of L by applying the law of addition of voltages.

B - Second experiment

In this experiment, another series circuit composed of: the capacitor of capacitance C , a resistor $\left(\mathrm{D}_{2}\right)$ and an ammeter $\left(\mathrm{A}_{1}\right)$ of negligible resistance, is connected between A and B as shown in figure 3. Thus the second branch carries an alternating sinusoidal current i_{2}.
The oscilloscope is used, in this case, to display the voltage $u_{\mathrm{EB}}=\mathrm{u}_{\mathrm{C}}$ across the terminals of the capacitor and the voltage $u_{\text {DB }}$ across the terminals of $\left(D_{1}\right)$.
U_{m} and ω of the (LFG) are kept constant. The adjustments of the oscilloscope remain the same.

Fig. 3

The obtained two waveforms are confounded and represented on figure 4.
Knowing that $\mathrm{i}_{1}=0.1 \sin \left(\omega \mathrm{t}-\frac{\pi}{4}\right) \quad\left(\mathrm{i}_{1}\right.$ in A, t in s$)$.

1) Write the expression of u_{C} as a function of time.
2) Determine the expression of i_{2} in terms of C and t.
3) The ammeter $\left(A_{1}\right)$ indicates 27.7 mA . Determine the value of C.

Fig. 4

Third exercise: (7.5 points)

Torsion Pendulum

The aim of this exercise is to study the motion of a torsion pendulum. Consider a torsion pendulum that is constituted of a homogeneous disk (D), of negligible thickness, suspended from its center of inertia O by a vertical torsion wire connected at its upper extremity to a fixed point O^{\prime} (Fig.1).

Given:

- the moment of inertia of (D) about the axis $\left(\mathrm{OO}^{\prime}\right): \mathrm{I}=3.2 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$;
- the torsion constant of the wire: $\mathrm{C}=8 \times 10^{-4} \mathrm{~m} . \mathrm{N} / \mathrm{rad}$;
- the horizontal plane passing through O is taken as a gravitational potential energy reference.
A - Free un-damped oscillations
The forces of friction are supposed negligible.

The disk is in its equilibrium position. It is rotated around (OO^{\prime}), in the positive direction, by an angle $\theta_{\mathrm{m}}=0.1 \mathrm{rad}$, the disk is then released without initial velocity at the instant $\mathrm{t}_{0}=0$.
At the instant t, the angular abscissa of the disk is θ and its angular velocity is $\theta^{\prime}=\frac{d \theta}{d t}$.

1) Write, at the instant t, the expression of the mechanical energy of the system (pendulum, Earth) in terms of I, C, θ and θ^{\prime}.
2) Derive the second order differential equation that describes the variation of θ as a function of time.
3) The solution of this differential equation is of the form: $\theta=\theta_{m} \cos \left(\frac{2 \pi}{T_{0}} t+\varphi\right)$.

Determine the constants T_{0} and φ.

B - Free damped oscillations

In reality, the forces of friction are no more negligible. (D) thus performs slightly damped oscillations of pseudo period T .

1) At the end of each oscillation, the amplitude of the oscillations decreases by 2.5% of its precedent value.
a) Calculate the mechanical energy E_{0} of the system (pendulum, Earth) at the instant $\mathrm{t}_{0}=0$.
b) Show that the loss in the mechanical energy of the system (pendulum, Earth) by the end of the first oscillation is: $|\Delta \mathrm{E}|=1.97 \times 10^{-7} \mathrm{~J}$.
2) Calculate the value of the average power dissipated by the resistive forces admitting that the value of the pseudo period T is equal to that of T_{0}.

C-Driven oscillations

A driving apparatus (M) allows compensating for the loss of energy at the end of each oscillation.
This apparatus stores energy $\mathrm{W}=0.8 \mathrm{~J}$. The energy furnished by (M) to drive the oscillations represents 25% of energy stored in it.
Determine, in days, the maximum duration of driving the oscillations.

Fourth exercise: (7.5 points)

Diffraction and interference

Two horizontal slits F_{1} and F_{2}, are illuminated normally with a laser source. Each slit, cut in an opaque screen (P), has a width $\mathrm{a}_{1}=0.1 \mathrm{~mm}$ and are situated at a distance $\mathrm{F}_{1} \mathrm{~F}_{2}=\mathrm{a}=1 \mathrm{~mm}$ from each other. The wavelength of the laser light is $\lambda=600 \mathrm{~nm}$.
The distance between the plane (P) of the slits and the screen of observation (E) is $\mathrm{D}=2 \mathrm{~m}$. (Figure below). O is a point on the screen (E) and belongs to the perpendicular bisector of $\left[\mathrm{F}_{1} \mathrm{~F}_{2}\right]$.

A - We cover the slit F_{1} by an opaque sheet thus light is emitted only from F_{2}.

1) The phenomenon of diffraction is observed on the screen (E). Justify.
2) Redraw the figure and trace the beam of light leaving the slit F_{2}.
3) Describe the pattern observed on the screen (E).
4) Write the expression of the angular width α (α is very small) of the central bright fringe in terms of λ and a_{1}.
5) a) Show that the linear width L of the central bright fringe is given by: $L=\frac{2 \lambda D}{a_{1}}$.
b) Calculate L .
6) The opaque sheet is moved to cover the slit F_{2}. The slit F_{1} sends light now on the screen (E).

The center of the new central bright fringe is at a distance d from the previous center of the central bright fringe. Specify the value of d.
B - We remove away the opaque sheet and the two slits are now both illuminated with the laser beam.
For a point M on (E), such that $\mathrm{x}=\overline{\mathrm{OM}}$, the optical path difference in air is given by $\delta=\frac{\mathrm{ax}}{\mathrm{D}}$.

1) Determine the expression of the abscissa x_{k} corresponding to the center of the $k^{\text {th }}$ dark fringe.
2) Deduce the expression of the interfringe distance i.
3) Calculate i.
4) Consider a point N on the screen (E) having an abscissa $\mathrm{x}_{\mathrm{N}}=\overline{\mathrm{ON}}=2.4 \mathrm{~mm}$. Specify the nature and the order of the fringe at point N .
5) We move the screen (E) towards the plane (P) of the slits and parallel to it by a distance of 40 cm . Determine the nature and the order of the new fringe at N .
مشروع معيار التصحيح

First exercise (7.5 points)

Part of the Q	Answer	Mark
A.1.	$\begin{aligned} & \mathrm{E}=\mathrm{u}_{\mathrm{R}}+\mathrm{u}_{\mathrm{C}}=\mathrm{Ri}+\mathrm{u}_{\mathrm{C}} ; \text { But } \mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\mathrm{C} \frac{\mathrm{du}}{\mathrm{C}} \\ & \Rightarrow \mathrm{dt} \end{aligned} .$	0.75
A.2.	$\begin{aligned} & \mathrm{u}_{\mathrm{C}}=\mathrm{A}+\mathrm{Be}^{-\frac{\mathrm{t}}{\tau}} \Rightarrow \frac{\mathrm{du}}{\mathrm{C}} \\ & \mathrm{dt} \end{aligned}=-\frac{\mathrm{B}}{\tau} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} .$	1
A.3.a	From the graph , τ is the point where line OT intersects the asymptote $\Rightarrow \tau=1 \mathrm{~ms}$	0.5
A.3.b	$\begin{aligned} & \text { At } \mathrm{t}=\tau, \mathrm{u}_{\mathrm{C}}=0.63 \mathrm{E} \Rightarrow \mathrm{E}=\frac{7.56}{0.63}=12 \mathrm{~V} \\ & \tau=\mathrm{RC} \Rightarrow \mathrm{R}=10^{3} \Omega \end{aligned}$	0.75
B.1.	Figure	0.25
B.2.	$\mathrm{u}_{\mathrm{AB}}+\mathrm{u}_{\mathrm{BM}}=0, \Rightarrow-\mathrm{Ri}+\mathrm{u}_{\mathrm{c}}=0 \Rightarrow-\mathrm{Ri}+\frac{\mathrm{q}}{\mathrm{c}}=0$ Derive w.r.t.time, $-\mathrm{R} \frac{\mathrm{di}}{\mathrm{dt}}+\frac{1}{\mathrm{C}}\left(\frac{\mathrm{dq}}{\mathrm{dt}}\right)$ but $\mathrm{i}=-\frac{\mathrm{dq}}{\mathrm{dt}} \Rightarrow \mathrm{i}+\mathrm{RC} \frac{\mathrm{di}}{\mathrm{dt}}=0$	0.75
B.3.	$\mathrm{i}=\mathrm{I}_{0} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} \Rightarrow \frac{\mathrm{di}}{\mathrm{dt}}=-\frac{\mathrm{I}_{0}}{\tau} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} \Rightarrow \mathrm{I}_{0} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}-\frac{\mathrm{RC}}{\tau} \mathrm{I}_{0} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}=0, \text { verified }$	0.5
B.4.a.	$\mathrm{i}=\mathrm{I}_{0} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}, \mathrm{att}_{0}=0, \mathrm{i}=\mathrm{I}_{0} \mathrm{e}^{0}=0.012 \mathrm{~A} \Rightarrow \mathrm{At} \mathrm{t}=2.5 \tau, \mathrm{i}=\mathrm{I}_{0} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}=0.082 \mathrm{I}_{0} \Rightarrow \mathrm{i}=9.84 \times 10^{-4} \mathrm{~A}$	0.75
B.4.b	$\mathrm{u}_{\mathrm{C}}=\mathrm{u}_{\mathrm{R}}=\mathrm{Ri}=0.984 \mathrm{~V}$	0.25
B. 5 .	$\mathrm{W}_{\mathrm{e}}=\frac{1}{2} \mathrm{C}\left(\mathrm{E}^{2}-\mathrm{u}^{2}\right)=7.15 \times 10^{-5} \mathrm{~J}$	0.75
B.6.a	$\mathrm{W}_{\mathrm{h}}=\int_{\mathrm{t}_{0}}^{\mathrm{t}_{1}} \mathrm{Ri}^{2} \mathrm{dt}=\mathrm{W}_{\mathrm{h}}=\frac{\mathrm{RI}_{0}^{2} \tau}{2}\left(\mathrm{e}^{0}-\mathrm{e}^{-5}\right)=7.15 \times 10^{-5} \mathrm{~J}$	0.75
B.6.b	$\mathrm{W}_{\mathrm{e}}=\mathrm{W}_{\mathrm{h}}$ then the electric energy lost by the capacitor is transformed to heat energy through the resistor	0.5

Second exercise (7.5 points)

Part of the \mathbf{Q}	Answer	Mark
A. 1		0.5
A.2.a	In A.C. and in an RL circuit, u_{G} leads $u_{D B}$ (on i_{1}). and a leads \Rightarrow a gives $\quad \mathrm{u}_{\mathrm{AB}} \mathrm{Or}_{\mathrm{m} 1}>\mathrm{U}_{\mathrm{m}(\mathrm{BD})}$ and $\left.\mathrm{Umg}^{>}>\mathrm{U}_{\mathrm{m} \text { BD }}\right) \Rightarrow$ a gives u_{AB}	0.5
A.2.b.i	$\mathrm{T}=8 \times 1=8 \mathrm{~ms}=0.008 \mathrm{~S} ; \omega=\frac{2 \pi}{\mathrm{~T}}=250 \pi \mathrm{rd} / \mathrm{s} .$	1.00
A.2.b.ii	$\mathrm{U}_{\mathrm{m}}=3.5 \times 1=3.5 \mathrm{~V} ; \mathrm{U}_{\mathrm{m} 1}=2.5 \times 1=2.5 \mathrm{~V}$.	1.00
A.2.b.iii	$\varphi=\frac{2 \pi}{8} \times 1=\frac{\pi}{4} \mathrm{rad} .$	0.50
A.3.a.	$\mathrm{u}_{\mathrm{R} 1}=2.5 \sin \left(250 \pi \mathrm{t}-\frac{\pi}{4}\right) .$	0.50
A.3.b	$\begin{aligned} & \mathrm{I}_{\mathrm{m} 1}=\frac{\mathrm{U}_{\mathrm{m} 1}}{\mathrm{R}_{1}}=\frac{2.5}{25}=0.1 \mathrm{~A} . \quad \mathrm{i}_{1}=0.1 \sin \left(250 \pi \mathrm{t}-\frac{\pi}{4}\right) . \\ & \text { Or } \mathrm{i}_{1}=\frac{\mathrm{u}_{\mathrm{R} 1}}{\mathrm{R}}=0.1 \sin \left(250 \pi-\frac{\pi}{4}\right) \end{aligned}$	0.50
A. 4	$\begin{aligned} & u=u_{L}+u_{D B} ; \text { with: } u_{L}=L \frac{d i_{1}}{d t}=25 \pi L \cos \left(250 \pi t-\frac{\pi}{4}\right) ; \\ & u_{D B}=R_{1} i_{1}=2.5 \sin \left(250 \pi t-\frac{\pi}{4}\right) . \end{aligned}$ We have then: $3.5 \sin (250 \pi \mathrm{t})=25 \pi \mathrm{~L} \cos \left(250 \pi \mathrm{t}-\frac{\pi}{4}\right)+2.5 \sin \left(250 \pi \mathrm{t}-\frac{\pi}{4}\right)$. For $\mathrm{t}=0$, we have: $0=25 \pi \mathrm{~L} \frac{\sqrt{2}}{2}-2.5 \frac{\sqrt{2}}{2} \Rightarrow \frac{\sqrt{2}}{2} \times \mathrm{L}=\frac{0.1}{\pi}=0.032 \mathrm{H}$.	1.25
B. 1	$\mathrm{u}_{\mathrm{c}}=\mathrm{u}_{\mathrm{R} 1}=2.5 \sin \left(250 \pi \mathrm{t}-\frac{\pi}{4}\right) .$	0.50
B.2.	$\mathrm{i}_{2}=\mathrm{C} \frac{\mathrm{du}_{\mathrm{C}}}{\mathrm{dt}}=625 \pi \mathrm{C} \cos \left(250 \pi \mathrm{t}-\frac{\pi}{4}\right)$	0.5
B. 3	The ammeter gives $\mathrm{I}_{\text {eff }}=0.0277 \mathrm{~A} \Rightarrow \mathrm{I}_{2 \mathrm{M}}=\mathrm{I}_{\text {eff }} \sqrt{2}=0.0391 \mathrm{~A}$ But $I_{2 m}=625 \mathrm{C} \Rightarrow \mathrm{C}=\frac{\mathrm{I}_{2 \mathrm{~m}}}{625 \pi}=2 \times 10^{-5} \mathrm{~F}$	0.75

Third exercise ($\mathbf{7 . 5}$ points)

$\begin{aligned} & \text { Part of } \\ & \text { the Q } \\ & \hline \end{aligned}$	Answer	Mark
A.1.	$\mathrm{M} \cdot \mathrm{E}=\frac{1}{2} \mathrm{I} \theta^{\prime 2}+\frac{1}{2} \mathrm{C} \theta^{2}$	1.00
A.2.	$\text { M.E }=\operatorname{Cte} \Rightarrow \frac{\mathrm{dE}_{\mathrm{m}}}{\mathrm{dt}}=0 \Rightarrow \mathrm{I} \theta^{\prime} \theta^{\prime \prime}+\mathrm{C} \theta \theta^{\prime}=0 \Rightarrow \theta^{\prime \prime}+\frac{\mathrm{C}}{\mathrm{I}} \theta=0$	1.00
A.3.	$\begin{aligned} & \theta=\theta_{\mathrm{m}} \cos \left(\frac{2 \pi}{\mathrm{~T}_{0}} \mathrm{t}+\varphi\right) \Rightarrow \theta^{\prime}=-\theta_{\mathrm{m}} \frac{2 \pi}{\mathrm{~T}_{0}} \sin \left(\frac{2 \pi}{\mathrm{~T}_{0}} \mathrm{t}+\varphi\right) \\ & \Rightarrow \theta^{\prime \prime}=-\theta_{\mathrm{m}}\left(\frac{2 \pi}{\mathrm{~T}_{0}}\right)^{2} \sin \left(\frac{2 \pi}{\mathrm{~T}_{0}} \mathrm{t}+\varphi\right)=-\left(\frac{2 \pi}{\mathrm{~T}_{0}}\right)^{2} \theta \end{aligned}$ Sub. In the differential equation: $\frac{4 \pi^{2}}{\mathrm{~T}_{0}^{2}} \theta+\frac{\mathrm{C}}{\mathrm{I}} \theta=0$ $\begin{aligned} & \Rightarrow \omega_{0}=\sqrt{\frac{C}{I}} \Rightarrow T_{0}=2 \pi \sqrt{\frac{I}{C}} \Rightarrow T_{0} \approx 0.4 \mathrm{~s} . \\ & \theta=0.1 \mathrm{rad} \Rightarrow \theta_{\mathrm{m}} \cos \varphi=0.1 \Rightarrow \varphi=0 \end{aligned}$	1.5
B.1.a	$\mathrm{M} \cdot \mathrm{E}_{0}=\frac{1}{2} \mathrm{C} \theta_{0 \mathrm{~m}}^{2}=4 \times 10^{-6} \mathrm{~J}$	0.75
B.1.b	$\begin{aligned} & \theta_{0 \mathrm{~m}}=0.1 \mathrm{rad} \Rightarrow \theta_{1 \mathrm{~m}}=\frac{0.1 \times 97.5}{100}=0.0975 \mathrm{rad} . \\ & \Rightarrow\|\Delta E\|=\frac{1}{2} \mathrm{C}^{\left(\theta_{0 \mathrm{~m}}^{2}-\theta_{1 \mathrm{~m}}^{2}\right)}=1.97 \times 10^{-7} \mathrm{~J} \end{aligned}$	1.25
B. 2	$\mathrm{P}_{\mathrm{av}}=\frac{\Delta \mathrm{E}}{\mathrm{~T}}=-4.92 \times 10^{-7} \mathrm{~W}$	0.75
C	The energy used for driving is : $\frac{0.8 \times 25}{100}=0.2 \mathrm{~J}$. The duration of driving is : $\mathrm{t}=\frac{0.2}{4.92 \times 10^{-7}}=406504 \mathrm{~s}$; $t=\frac{406504}{24 \times 3600}=4.7 \text { day }$	1.25

Fourth exercise : (7.5 points)

Part of the Q	Answer	Mark
A. 1	The width of the slit a_{1} is of the order of mm (or λ has to be of the same order of $a_{1}\left(a_{1}=10^{3} \lambda\right)$.	0.50
A.2.	Aspect of the emerging beam.	0.50
A. 3	We observe : - Alternate bright and dark fringes. - The direction of the diffraction pattern is perpendicular to that of the slit. - The width of the central bright fringe is twice as broad as others.	0.75
A. 4	$\sin \alpha=\frac{2 \lambda}{\mathrm{a}_{1}}$ and in case of small angles $\sin \alpha \approx \alpha_{\mathrm{rd}} \Rightarrow \alpha=\frac{2 \lambda}{\mathrm{a}_{1}}$	0.50
A.5.a	Figure $\tan \frac{\alpha}{2}=\frac{L}{2 D}$ and case of small angles $\tan \alpha \approx \alpha_{r d} \Rightarrow L=\alpha \times D=\frac{2 \lambda D}{a_{1}}$.	0.75
A.5.b	$\mathrm{L}=\frac{2 \times 0.633 \times 10^{-3} \times 2 \times 10^{3}}{0.1} \mathrm{~mm}=25 \mathrm{~mm}$	0.50
A.6.	The displacement of 1 mm is due to the distance $\mathrm{a}=1 \mathrm{~mm}$ between the two slits	0.50
B.1.	$\delta=\frac{\mathrm{ax}}{\mathrm{D}}, \text { Dark fringe } \delta=(2 \mathrm{k}+1) \frac{\lambda}{2} \Rightarrow \mathrm{x}=(2 \mathrm{k}+1) \frac{\lambda \mathrm{D}}{2 \mathrm{a}}$	0.75
B.2.	$\mathrm{i}=\mathrm{x}_{\mathrm{k}+1}-\mathrm{x}_{\mathrm{k}}=\frac{[2(\mathrm{k}+1)+1] \lambda \mathrm{D}}{2 \mathrm{a}}-\frac{(2 \mathrm{k}+1) \lambda \mathrm{D}}{2 \mathrm{a}}=\frac{\lambda \mathrm{D}}{\mathrm{a}} .$	0.75
B.3.	$\mathrm{i}=\frac{0.6 \times 10^{-3} \times 2 \times 10^{3}}{1}=1.2 \mathrm{~mm} .$	0.50
B.4.	$\frac{x}{i}=\frac{2.4}{1.2}=2 \Rightarrow x=2 i \Rightarrow$ center of the second bright fringe	0.75
B.5.	$\begin{aligned} & \mathrm{x}=(2 \mathrm{k}+1) \frac{\lambda \mathrm{D}}{2 \mathrm{a}} \Rightarrow 2.4 \times 10^{-3}=(2 \mathrm{k}+1) \frac{600 \times 10^{-9} \times 2}{2 \times 10^{-3}} \\ & \Rightarrow \mathrm{k}=2 \text { then it corresponds to the center of third dark fringe } \end{aligned}$	0.75

