الاسم:	مسابقة في مادة الفيزياء
الرقم:	المدة ثلاث ساعات

This exam is formed of four exercises in four pages numbered from 1 to 4. The use of non-programmable calculator is recommended,

First exercise: (7.5 points) Variation of the kinetic energy of a system

The aim of this exercise is to verify the theorem of kinetic energy of a system.

The skier (S) of mass M=80 kg, moves down from O to A, with a constant velocity $\vec{v}=\vec{v}i$, where v=30m/s along the line of greatest slope of a track inclined by an angle $\alpha=30^\circ$ with the horizontal. The track exerts on the skier a constant force of friction $\vec{f}=-\vec{f}i$.

The motion of the skier is represented by the motion of its center of mass G on $\overrightarrow{x'x}$ where \overrightarrow{i} is a unit vector along this axis (figure 1).

Take:

- the horizontal plane through B as a gravitational potential energy reference for the system (skier, Earth).
- $g = 10 \text{ m/s}^2$.
- 1) Name and represent the external forces acting on G along the path OA.
- 2) a) Show that the linear momentum P of the skier is constant.
 - **b)** Apply Newton's second law on the skier, between the points O and A, deduce the magnitude of \vec{f} .
- 3) The skier, upon reaching A, starts exerting a constant braking force $\vec{f}_1 = -f_1\vec{i}$ to stop at B. The skier covers the distance AB during a time interval $\Delta t = 3$ s.
 - a) Determine the magnitude of \vec{f}_1 , assuming that $\frac{\Delta \vec{P}}{\Delta t} \approx \frac{d\vec{P}}{dt}$.
 - **b)** The mechanical energy of the system (skier, Earth) decreases from A to B. Name the forces that are responsible of this decrease.
 - c) Determine the distance AB covered by the skier during the time interval Δt .
- **4) a)** Determine between A and B:
 - i. the variation of the gravitational potential energy ΔPE_g of the system (skier, Earth);
 - ii. the work done by the weight $W_{m\vec{\sigma}}$.
 - **b)** Compare ΔPE_g and W_{mg} .
- 5) ΔKE and $\sum W_{\check{F}_{ext}}$ are respectively the variation of the kinetic energy of the skier and the algebraic sum of the work done by the external forces between A and B. Verify, between A and B, the work-energy theorem: $\Delta KE = \sum W_{\check{F}_{ext}}$.

The characteristics of RLC series circuit **Second exercise:** (7.5 points)

Consider:

- a generator G delivering an alternating sinusoidal voltage: $u_{AM} = u_G = u = U \sqrt{2} \cos \omega t$ (u in V and t in s), where U = 5 V and $\omega = 2\pi f$ with adjustable frequency f;
- a coil of inductance L and of negligible resistance;
- a capacitor of capacitance C: •
- a resistor of resistance $R = 150 \Omega$;
- an oscilloscope; •
- a milli-ammeter of negligible resistance; •
- a switch K and connecting wires.

In order to determine L and C, we perform the following experiments:

A- First experiment

We perform successively the setup of figure 1 and of figure 2.

For f = 500 Hz, the effective current I, indicated by the milli-ammeter, has the same

value I= 50mA in both setups. Take
$$\frac{1}{\pi} = 0.32$$
.

- 1) The coil is connected across the terminals of G (figure 1). The circuit carries a current i of expression $I = I\sqrt{2} \cos(\omega t - \frac{\pi}{2})$. (i in A and t in s)
 - a) Determine the expression of the voltage $u_{BD} = u_{coil}$ in terms of L, ω , I and t.
 - **b)** Deduce the value of L.
- 2) The capacitor is connected across the terminals of G (figure 2). The circuit carries a current i of expression $i = I\sqrt{2} \cos(\omega t + \frac{\pi}{2})$.
 - a) Determine the expression of the voltage $u_{BD} = u_{C}$ in terms of C, ω , I and t.
 - **b)** Deduce the value of C.

B- Second experiment

To verify the values obtained for L and C in the first experiment, we perform the setup of the circuit shown in Figure 3. This circuit contains the generator, the coil, the capacitor, and the resistor of resistance $R = 150 \Omega$. The oscilloscope, displays on channel (1), the voltage u_{AM} across the generator, and on channel (2), the voltage u_{DM} across the resistor. Figure (4) shows the waveforms representing u_{AM} and u_{DM}. The circuit carries a current $i = I\sqrt{2} \cos(\omega t + \varphi)$.

- 1) Redraw figure 3 and indicate the connections of the oscilloscope.
- 2) Apply the law of addition of voltages and give t a particular

value, show that:
$$\tan \phi = \frac{\frac{1}{C\omega} - L\omega}{R}$$
. Referring to the waveform of Figure 4

- 3) Referring to the waveform of Figure 4 observed on the screen of the oscilloscope, determine:
 - a) the frequency f;
 - **b**) the phase difference φ between u and i.
- 4) The effective voltage U being kept constant and we vary f. We observe that u_{AM} and u_{DM} become in phase when f takes the value $f_0 = 500$ Hz.
 - a) Name the phenomenon that takes place.
 - **b)** Give the relation giving ω_0 in terms of L and C.
- 5) Determine L and C.

Figure 1

Figure 2

Figure 4 Horizontal Sensitivity: 0.5 ms/div

Third exercise: (7.5 points) Corpuscular aspect of light

The aim of this exercise is to study the emission spectrum of the hydrogen atom and use the emitted light to produce photoelectric effect.

Given:

- Planck's constant: $h = 6.62 \times 10^{-34} \text{ J.s}$;
- Speed of light in vacuum: $c = 3 \times 10^8$ m/s;
- $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$;
- Elementary charge: $e = 1.602 \times 10^{-19} \,\mathrm{C}$;
- $1 \text{ nm} = 10^{-9} \text{ m}.$

A. Hydrogen atom

The emission spectrum of the hydrogen atom constituted in its visible part of four radiations denoted by H_{α} , H_{β} , H_{γ} and H_{δ} of respective wavelengths, in vacuum, 656.27nm, 486.13nm, 435.05nm and 410.17nm.

I. In 1885, Balmer noticed that the wavelengths λ of these four radiations verify the empirical formula

$$\lambda = \lambda_0 \, \frac{n^2}{n^2 - 4}$$
 where $\lambda_0 = 364.6$ nm where n is a non-zero positive whole number.

- 1) The smallest value of n is 3. Justify.
- 2) Calculate the wavelength corresponding to this radiation.
- 3) Deduce the values of n corresponding to the wavelengths of the other three visible radiations in the emission spectrum of the hydrogen atom.
- **II.** The quantized energy levels of the hydrogen atom are given by the formula:

$$E_n = -\frac{13.6}{n^2}$$
 (in eV) where n is a whole non-zero positive number.

Using the expression of E_n, determine the energy of the atom when it is:

- 1) in the ground state.
- 2) in each of the first five excited levels.
- 3) ionized state.

B. Photoelectric effect

A hydrogen lamp of power $P_S = 2W$, emits uniformly radiation in all directions in a homogeneous and non- absorbing medium. This lamp illuminates a potassium cathode C of a photoelectric cell of work function $W_0 = 2.20 \; eV$ and of a surface area $s = 2 cm^2$ placed at a distance D = 1.25 m from the lamp (figure1).

- 1) Calculate the threshold wavelength of the potassium cathode.
- 2) Among the rays of Balmer series, specify the radiation that can produce photoelectric emission.
- 3) Using a filter we illuminate the cell by a blue light H_{β} of wavelength $\lambda = 486.13$ nm. The generator G is adjusted so that the anode (A) captures all the emitted electrons by the cathode of quantum efficiency r = 0.875%.
 - a) Show that the received power of the radiation P_0 of the cell is 2.04×10^{-5} W.
 - **b**) Determine the number N_0 of the incident photons received by the cathode C in one second.
 - c) Determine the current in the circuit.

Fourth exercise: (7.5 points) Compound Pendulum

The aim of this exercise is to study the motion of a compound pendulum.

Consider a compound pendulum (P) consists:

- of a straight and homogeneous rod (R) of length $AB = \ell$ and of mass m;
- of a solid (S), taken as a particle of mass m₁, free to slide along the part OB of the rod, O being the midpoint of the rod.

- (P) can oscillate, in a vertical plane, around a horizontal axis (Δ) perpendicular to the rod at O (figure 1).
- (P) is shifted from its equilibrium position by a small angle θ_m then released without initial velocity at the instant $t_0=0$, the pendulum oscillate then, without friction, around its equilibrium position.

At the instant t, the angular elongation of the pendulum is θ and its angular velocity is $\theta' = \frac{d\theta}{dt}$.

Given: moment of inertia of the rod about the axis of rotation (Δ): $I_0 = \frac{1}{12} m \ell^2$, $m = 3m_1$,

$$\ell = 0.5 \text{ m}, \text{ g} = 10 \text{ m/s}^2 \text{ and } \pi^2 = 10.$$

For small
$$\theta$$
: $\cos \theta \approx 1 - \frac{\theta^2}{2}$ and $\sin \theta \approx \theta$ (θ in rd).

G is the center of inertia of the pendulum and the horizontal plane passing through O is taken as reference level of the gravitational potential energy.

- 1) Show that:
 - a) $\overline{OG} = \frac{x}{4}$;
 - **b)** The expression of the moment of inertia of the pendulum is: $I = \frac{m}{12}(\ell^2 + 4x^2)$.
- 2) Determine the expression the mechanical energy of the system (pendulum, Earth) in terms of θ , θ' , m ,x and ℓ .
- 3) a) Establish the second order differential equation in θ which governs the oscillations of the pendulum.
 - **b)** Deduce that the expression of the proper period of the pendulum is: $T_0 = \sqrt{\frac{4x^2 + \ell^2}{x}}$.
- 4) a) Determine the value of x for which T_0 is minimum.
 - **b**) Deduce that $T_{0(min)} = 1.41 \text{ s.}$
- 5) Using a coupling device, the pendulum (P) plays the role of an exciter for a simple pendulum (P₁) of length $\ell_1 = 65$ cm. The oscillations of (P) and (P₁) are slightly damped.
 - a) Knowing that the proper period of the simple pendulum, for small oscillation, is $T = 2\pi \sqrt{\frac{\ell}{g}}$,

Calculate the value of the proper period T_{01} of (P_1) .

- **b) i)** (P) oscillates now with its minimum period. It is noticed that (P₁) does not enter in amplitude resonance with (P). Justify.
 - ii) We move (S) between O and B. For a value x_0 of x, we notice that (P_1) oscillates with large amplitude. Calculate the value of x_0 .

4

دورة العام 2016 العاديّة الاثنين 13 حزيران 2016	امتحانات الشبهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية
		دائرة الامتحاثات
الاسم: الرقم:	المرخ تلارث ساعات	مشروع معيار التصحيح

First exercise (7.5 points)

Part of the Q	Answer	Mark
1	The forces acting on the skier : • Normal reaction \vec{N} ; • Weight $m\vec{g}$; • The frictional force \vec{f} Diagram.	3/4
2.a	$\vec{P} = M\vec{V}$ since $\vec{V} = \vec{Cte} \implies \vec{P} = \vec{Cte}$.	3/4
2.b	$\frac{d\vec{P}}{dt} = \vec{Mg} + \vec{N} + \vec{f} = \vec{0} \text{project along x'x: Mgsin} \alpha - f = 0$	1
3.a	$\Rightarrow f = Mgsin\alpha = 400 \text{ N.}$ $\frac{d\vec{P}}{dt} = \overrightarrow{Mg} + \vec{f} + \overrightarrow{N} + \vec{f}_1 = \frac{\Delta \vec{P}}{\Delta t}$ Project along $x'x \Rightarrow -f_1 = \frac{MV_B - MV_A}{\Delta t} = -\frac{MV_A}{\Delta t} \Rightarrow f_1 = 800 \text{ N.}$ $\mathbf{Or} : \frac{\Delta \vec{P}}{\Delta t} = \sum \vec{F}_{ext} \Rightarrow \frac{\vec{P}_0 - \vec{P}_A}{\Delta t} = \sum \vec{F}_{ext}$ Project along $x'x : \frac{0 - MV_A}{\Delta t} = Mg \sin \alpha - f - f_1 = 0 - f_1 = -f_1 \Rightarrow f_1 = 800 \text{ N.}$	1
3.b	Because friction and braking forces	1/2
3.c	$\Delta M.E = W(\vec{f}) + W(\vec{f}_1) \Rightarrow M.E_B - M.E_A = W(\vec{f}) + W(\vec{f}_1) \Rightarrow$ $-1/2 \text{ MV}^2 - \text{Mg AB sin}\alpha = -\text{ f .AB} - \text{ f_1 . AB}$ $\Rightarrow (40 \times 900) + (400 \times \text{AB}) = 1200 \times \text{AB} \Rightarrow \text{AB} = 45 \text{ m.}$	1
4.a.i	Δ GPE = GPE _B - GPE _A = 0 - Mg AB sin α = - Mg AB sin α = - 1800 J	3/4
4.a.ii	$W(M\vec{g}) = Mgh = Mg AB \sin\alpha = 1800 J$	1/2
4.b	$\Delta(GPE) = -W (M\vec{g}).$	1/4
5	$\Delta M.E = \Delta K.E + \Delta GP.E = W(\vec{f}) + W(\vec{f}_1)$ $\Rightarrow \Delta K.E = W(M\vec{g}) + W(\vec{f}) + W(\vec{f}_1)$ since $W(\vec{N}) = 0 \Rightarrow \Delta K.E = \sum W_{\vec{f}_{ext}}$ $\mathbf{Or} : \Delta M.E = \Delta K.E + \Delta GP.E = W(\vec{f}) + W(\vec{f}_1)$ $\Rightarrow \Delta K.E. = W(\vec{f}) + W(\vec{f}_1) - \Delta GP.E = W(\vec{f}) + W(\vec{f}_1) + W(M\vec{g})$ $Or W(\vec{N}) = 0 \Rightarrow \Delta K.E. = \sum W_{\vec{f}_{ext}}$	1

Second exercise (7.5 points)

Part of the Q	Answer	Mark
A.1.a	$u_{BD} = u_{L} = L\frac{di}{dt} = -LI\omega\sqrt{2}\sin(\omega t - \frac{\pi}{2})$	3/4
A.1.b	$u_{AM} = u_{BD} \Rightarrow -LI\omega\sqrt{2}\sin(\omega t - \frac{\pi}{2}) = U\sqrt{2}\cos\omega t \Rightarrow LI\omega\sqrt{2}\cos(\frac{\pi}{2} + \omega t - \frac{\pi}{2}) = U\sqrt{2}\cos\omega t$	
	By comparison: $U\sqrt{2} = LI\omega\sqrt{2} \Rightarrow L = 0.032 \text{ H} = 32 \text{ mH}.$	3/4
	Or: $-\text{LI}\omega\sqrt{2}\sin(\omega t - \frac{\pi}{2}) = U\sqrt{2}\cos\omega t$	74
	For t = 0: $U\sqrt{2} = LI\omega\sqrt{2} \implies L = 0.032 \text{ H} = 32 \text{ mH}$.	
A.2.a	$i = C \frac{du_C}{dt} \Rightarrow u_C = \frac{1}{C} \int idt = \frac{I\sqrt{2}}{C\omega} \sin(\omega t + \varphi)$	3/4
A.2.b	$u_{AM} = u_{BD} \Rightarrow U\sqrt{2}\cos\omega t = \frac{I\sqrt{2}}{C\omega}\sin(\omega t + \frac{\pi}{2}) \Rightarrow U\sqrt{2}\cos\omega t = \frac{I\sqrt{2}}{C\omega}\cos(\frac{\pi}{2} - \omega t - \frac{\pi}{2})$	
	By comparison: $U\sqrt{2} = \frac{I\sqrt{2}}{C\omega} \Rightarrow C = 3.2 \times 10^{-6} \text{ F} = 3.2 \mu\text{F}$	3/4
	$\mathbf{Or}: \mathbf{u}_{AM} = \mathbf{u}_{BD} \Rightarrow \mathbf{U}\sqrt{2}\cos\omega t = \frac{\mathbf{I}\sqrt{2}}{\mathbf{C}\omega}\sin(\omega t + \frac{\pi}{2})$	
	For $t = 0$: $U\sqrt{2} = \frac{I\sqrt{2}}{C\omega}\sin(\frac{\pi}{2}) \implies C = 3.2 \times 10^{-6} \text{ F} = 3.2 \mu\text{F}$	
B.1	Connections of the oscilloscope	
	$\begin{array}{c c} Y_1 & & \\ \hline Q & & \\ \hline M & & \\ \hline \end{array} \begin{array}{c} L \\ \hline \frac{a^{1}B}{D}C \\ \hline \end{array} \begin{array}{c} V_2 \\ \hline \end{array}$	1/4
B.2	$u_{AM} = u_{AB} + u_{BD} + u_{DM} \Rightarrow$	
	$U\sqrt{2}\cos\omega t = -LI\omega\sqrt{2}\sin(\omega t + \varphi) + \frac{I\sqrt{2}}{C\omega}\sin(\omega t + \varphi) + RI\sqrt{2}\cos(\omega t + \varphi)$ For $\omega t = \frac{\pi}{2} \Rightarrow 0 = -LI\sqrt{2}\cos\varphi + \frac{I\sqrt{2}}{C\omega}\cos\varphi - RI\sqrt{2}\sin\varphi \Rightarrow \tan\varphi = \frac{\frac{1}{C\omega} - L\omega}{R}$	1
B.3.a	$T = 4 \text{ ms} \implies f = \frac{1}{T} = 250 \text{ Hz}.$	1/2
B.3.b	$\left \phi\right = \frac{2\pi}{8} = \frac{\pi}{4} \text{ rad.}$	1/2
B.4.a	Current resonance	1/4
B.4.b	$\varphi = 0 \Rightarrow \tan \varphi = 0 \Rightarrow \frac{1}{C\omega_0} = L\omega_0 \Rightarrow LC = \frac{1}{\omega_0^2}.$	1/2
B.5	$\phi = \frac{\pi}{4} \implies 1 = \frac{\frac{1}{C\omega} - L\omega}{R} \implies C = \frac{1 - LC\omega^2}{R\omega} = 3.2 \times 10^{-6} \text{ F} = 3.2 \mu\text{F}$ $\Rightarrow LC = \frac{1}{\omega_0^2} \implies L = \frac{1}{C\omega_0^2} = 32 \text{ mH}$	1 1/2

Third exercise (7.5 points)

Part of the Q	Answer	Mark
A.I.1	λ , λ_0 and n^2 are positive \Rightarrow $n^2\text{- }4>0$ \Rightarrow $n>2$ \Rightarrow the smallest value is $n=3.$	1/2
A.I.2	$\lambda = \lambda_0 \frac{n^2}{n^2 - 4} \Rightarrow \lambda = 656.46 \text{ nm}.$	1/2
A.I.3	In these conditions: $n = 4$ gives $\lambda = 486.13$ nm $n = 5$ gives $\lambda = 435.05$ nm $n = 6$ gives $\lambda = 410.17$ nm	3/4
A.II.1	Ground state $n = 1$: $E_1 = -13.6 \text{ eV}$.	1/2
A.II.2	1 st energy level (excited): $n = 2$: $E_2 = -\frac{13.6}{2^2} = -3.4 \text{eV}$ $E_3 = -1.51 \text{ eV}$; $E_4 = -0.85 \text{ eV}$; $E_5 = -0.54 \text{ eV}$ and $E_6 = -0.38 \text{ eV}$	1 1/4
A.II.3	The atom is ionized when $n \to \infty \Rightarrow E_{\infty} = 0$	1/2
B.1	$W_0 = \frac{hc}{\lambda_0} \Rightarrow \lambda_0 = \frac{hc}{W_0} = 5.65 \times 10^{-7} \text{m} = 565 \text{nm}$	3/4
B.2	The radiations of Balmer series that can produce photoelectric emission verifies the relation λ $\langle \lambda_0 \rangle$; H_{β} , H_{γ} and H_{δ} produce this emission because λ $\langle \lambda_0 \rangle$	1/2
B.3.a	$P_0 = \frac{P_S \times s}{4\pi D^2} = 2.04 \times 10^{-5} \mathrm{W}$	3/4
B.3.b	$N_{0/s} = \frac{P_0}{E_{photon}} = \frac{P_0 \times \lambda_{\beta}}{h \times c} = 4.99 \times 10^{13} \text{ photons/s}$	3/4
B.3.b	The number of effective photons = number of emitted electrons N_e $\Rightarrow N_e = r \times N_0 = 4.37 \times 10^{11} \text{ electrons/s}$ $I_0 = \frac{q}{t} = \frac{N_e e}{t} = 6.99 \times 10^{-8} \text{ A}$	3/4

Fourth exercise (7.5 points)

Part of the Q	Answer	Mark
1.a	$(m + m_1)\overrightarrow{OG} = m \overrightarrow{OO} + m_1\overrightarrow{OM} \Rightarrow \overrightarrow{OG} = \frac{x}{4}$	1/2
1.b	$I_{(sys)} = I_{(rod)} + I_{(S)} \implies I = \frac{1}{12}m\ell^2 + \frac{m}{3}x^2 = \frac{m}{12}(4x^2 + \ell^2)$	1/2
2	$ME = \frac{1}{2}I\theta'^{2} - (m + m_{1})gOG\cos\theta = \frac{m}{24}(4x^{2} + \ell^{2})\theta'^{2} - \frac{m}{3}gx\cos\theta$	3/4
3.a	$ME = Cte \implies \frac{dME}{dt} = 0 \implies \frac{m}{12} (4x^2 + \ell^2)\theta'\theta'' + \frac{m}{3} gx\theta' \sin\theta = 0, \theta' \neq 0$	2/
	For small angle $\sin\theta \approx \theta$ (rd) $\Rightarrow \theta'' + \left(\frac{4gx}{4x^2 + \ell^2}\right)\theta = 0$.	3/4
3.b	This differential equation has the form:	
	$\theta'' + \omega_0^2 \theta = 0 \Longrightarrow \omega_0 = \sqrt{\frac{4gx}{4x^2 + \ell^2}} \Longrightarrow T_0 = \sqrt{\frac{4x^2 + \ell^2}{x}}.$	1/2
4.a	$\frac{dT_0}{dx} = \frac{1}{2} \left(\frac{4x^2 - \ell^2}{x^2} \right) \left(\frac{4x^2 + \ell^2}{x} \right)^{-\frac{1}{2}}; T_0 \text{ is minimum when } \frac{dT_0}{dx} = 0 \text{ for } x$	1 1/2
	$\in \left]0, \frac{\ell}{2}\right] \Rightarrow 4x^2 - \ell^2 = 0 \;\; ; \; \text{then T_0 is minimal for } 4x^2 = \ell^2 \Rightarrow x = \frac{\ell}{2} \; .$	
4.b	$T_0 = \sqrt{\frac{\ell^2 + \ell^2}{\frac{\ell}{2}}} = 2\sqrt{\ell} = 1.41 \text{ s}$	1/2
5.a	$T_{01} = 2\pi \sqrt{\frac{\ell_1}{g}} = 1.61 \text{ s}$	1/2
5.b.i	The phenomenon of amplitude resonance will take place when the proper period of the exciter becomes equal (very close) of that of the resonator. As $T_0 = 1.41$ s of (P) is smaller than $T_{01} = 1.61$ S of (P ₁), therefore the phenomenon of resonance does not take place	1/2
5.b.ii	(P ₁) oscillates with large amplitude, therefore it is in resonance of amplitude with (P); and then the proper period of (P) is equal to $T_{01} = 1.61$ s. $4x^2 - (1,61)^2x + \ell^2 = 0$ \Rightarrow The solution of this quadratic equation gives; $x_1 = 53$ cm (rejected because it is > than $\frac{\ell}{2} = 25$ cm) and $x_2 = 11.75$ cm (accepted)	1 1/2