الاسم:	مسابقة في فـي مادة الفيزياء
الرقم:	المدة ثلاث ساعات

This exam is formed of four exercises in four pages numbered from 1 to 4. The use of non-programmable calculator is recommended,

First exercise: (7.5 points) Variation of the kinetic energy of a system

The aim of this exercise is to verify the theorem of kinetic energy of a system.
The skier (S) of mass $\mathrm{M}=80 \mathrm{~kg}$, moves down from O to A , with a constant velocity $\vec{v}=v \vec{i}$, where $v=30 \mathrm{~m} / \mathrm{s}$ along the line of greatest slope of a track inclined by an angle $\alpha=30^{\circ}$ with the horizontal. The track exerts on the skier a constant force of friction $\vec{f}=-f \vec{i}$.
The motion of the skier is represented by the motion of its center of mass G on $\overrightarrow{x^{\prime} x}$ where $\overrightarrow{\mathrm{i}}$ is a unit vector along this
 axis (figure 1).
Neglect the air resistance on the skier.
Take:

- the horizontal plane through B as a gravitational potential energy reference for the system (skier, Earth).
- $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

1) Name and represent the external forces acting on G along the path $O A$.
2) a) Show that the linear momentum \vec{P} of the skier is constant.
b) Apply Newton's second law on the skier, between the points O and A, deduce the magnitude of \vec{f}.
3) The skier, upon reaching A, starts exerting a constant braking force $\vec{f}_{1}=-f_{1} \vec{i}$ to stop at B. The skier covers the distance AB during a time interval $\Delta \mathrm{t}=3 \mathrm{~s}$.
a) Determine the magnitude of $\overrightarrow{\mathrm{f}}_{1}$, assuming that $\frac{\Delta \overrightarrow{\mathrm{P}}}{\Delta \mathrm{t}} \approx \frac{\mathrm{d} \overrightarrow{\mathrm{P}}}{\mathrm{dt}}$.
b) The mechanical energy of the system (skier, Earth) decreases from A to B. Name the forces that are responsible of this decrease.
c) Determine the distance AB covered by the skier during the time interval $\Delta \mathrm{t}$.
4) a) Determine between A and B :
i. the variation of the gravitational potential energy $\triangle \mathrm{PE}_{\mathrm{g}}$ of the system (skier, Earth) ;
ii. the work done by the weight W_{mg}.
b) Compare $\Delta \mathrm{PE}_{\mathrm{g}}$ and $\mathrm{W}_{\mathrm{m} \overline{\mathrm{g}}}$.
5) $\Delta \mathrm{KE}$ and $\sum \mathrm{W}_{\overrightarrow{\mathrm{F}}_{\text {ext }}}$ are respectively the variation of the kinetic energy of the skier and the algebraic sum of the work done by the external forces between A and B.
Verify, between A and B , the work-energy theorem: $\Delta \mathrm{KE}=\sum \mathrm{W}_{\mathrm{F}_{\mathrm{ext}}}$.

Second exercise: (7.5 points) The characteristics of RLC series circuit

Consider:

- a generator G delivering an alternating sinusoidal voltage :
$\mathrm{u}_{\mathrm{AM}}=\mathrm{u}_{\mathrm{G}}=\mathrm{u}=\mathrm{U} \sqrt{2} \cos \omega \mathrm{t}(\mathrm{u}$ in V and t in s$)$, where $\mathrm{U}=5 \mathrm{~V}$ and $\omega=2 \pi \mathrm{f}$ with adjustable frequency f ;
- a coil of inductance L and of negligible resistance;
- a capacitor of capacitance C;
- a resistor of resistance $\mathrm{R}=150 \Omega$;
- an oscilloscope;
- a milli-ammeter of negligible resistance;
- a switch K and connecting wires.

In order to determine L and C , we perform the following experiments:

A- First experiment

We perform successively the setup of figure 1 and of figure 2 .
For $\mathrm{f}=500 \mathrm{~Hz}$, the effective current I , indicated by the milli-ammeter, has the same value $\mathrm{I}=50 \mathrm{~mA}$ in both setups. Take $\frac{1}{\pi}=0.32$.

1) The coil is connected across the terminals of G (figure 1). The circuit carries a current i of expression $I=I \sqrt{2} \cos \left(\omega t-\frac{\pi}{2}\right.$). (i in A and t in s)
a) Determine the expression of the voltage $\mathrm{u}_{\mathrm{BD}}=\mathrm{u}_{\text {coil }}$ in terms of $\mathrm{L}, \omega, \mathrm{I}$ and t .
b) Deduce the value of L.
2) The capacitor is connected across the terminals of G (figure 2). The circuit carries a current i of expression $i=I \sqrt{2} \cos \left(\omega t+\frac{\pi}{2}\right)$.
a) Determine the expression of the voltage $u_{B D}=u_{C}$ in terms of C, ω, I and t.
b) Deduce the value of C .

B- Second experiment

To verify the values obtained for L and C in the first experiment, we perform the setup of the circuit shown in Figure 3. This circuit contains the generator, the coil, the capacitor, and the resistor of resistance $\mathrm{R}=150 \Omega$. The oscilloscope, displays on channel (1), the voltage u_{Am} across the generator, and on channel (2), the voltage $u_{D M}$ across the resistor. Figure (4) shows the waveforms representing $u_{A M}$ and $u_{D M}$. The circuit carries a current $\mathrm{i}=\mathrm{I} \sqrt{2} \cos (\omega \mathrm{t}+\varphi)$.

Figure 1

Figure 2

Figure 3

1) Redraw figure 3 and indicate the connections of the oscilloscope.
2) Apply the law of addition of voltages and give t a particular
value, show that: $\tan \varphi=\frac{\frac{1}{C \omega}-L \omega}{R}$.
3) Referring to the waveform of Figure 4 observed on the screen of the oscilloscope, determine:
a) the frequency f;
b) the phase difference φ between u and i.
4) The effective voltage U being kept constant and we vary f. We observe that $u_{A M}$ and $u_{D M}$ become in phase when f takes the value $\mathrm{f}_{0}=500 \mathrm{~Hz}$.
a) Name the phenomenon that takes place.
b) Give the relation giving ω_{0} in terms of L and C .
5) Determine L and C.

Figure 4
Horizontal Sensitivity : $\mathbf{0 . 5} \mathbf{~ m s} /$ div

The aim of this exercise is to study the emission spectrum of the hydrogen atom and use the emitted light to produce photoelectric effect.

Given:

- Planck's constant: $\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J} . \mathrm{s}$;
- Speed of light in vacuum: $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$;
- $1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$;
- Elementary charge: $\mathrm{e}=1.602 \times 10^{-19} \mathrm{C}$;
- $1 \mathrm{~nm}=10^{-9} \mathrm{~m}$.

A. Hydrogen atom

The emission spectrum of the hydrogen atom constituted in its visible part of four radiations denoted by $\mathrm{H}_{\alpha}, \mathrm{H}_{\beta}, \mathrm{H}_{\gamma}$ and H_{δ} of respective wavelengths, in vacuum, $656.27 \mathrm{~nm}, 486.13 \mathrm{~nm}, 435.05 \mathrm{~nm}$ and 410.17 nm .
I. In 1885 , Balmer noticed that the wavelengths λ of these four radiations verify the empirical formula $\lambda=\lambda_{0} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}-4}$ where $\lambda_{0}=364.6 \mathrm{~nm}$ where n is a non-zero positive whole number.

1) The smallest value of n is 3 . Justify.
2) Calculate the wavelength corresponding to this radiation.
3) Deduce the values of n corresponding to the wavelengths of the other three visible radiations in the emission spectrum of the hydrogen atom.
II. The quantized energy levels of the hydrogen atom are given by the formula:
$E_{n}=-\frac{13.6}{n^{2}}$ (in eV) where n is a whole non-zero positive number.
Using the expression of E_{n}, determine the energy of the atom when it is:
4) in the ground state.
5) in each of the first five excited levels.
6) ionized state.

B. Photoelectric effect

A hydrogen lamp of power $\mathrm{P}_{\mathrm{S}}=2 \mathrm{~W}$, emits uniformly radiation in all directions in a homogeneous and non- absorbing medium. This lamp illuminates a potassium cathode C of a photoelectric cell of work function $W_{0}=2.20 \mathrm{eV}$ and of a surface area $\mathrm{s}=2 \mathrm{~cm}^{2}$ placed at a distance $\mathrm{D}=1.25 \mathrm{~m}$ from the lamp (figure1).

1) Calculate the threshold wavelength of the potassium cathode.
2) Among the rays of Balmer series, specify the radiation that can produce photoelectric emission.
3) Using a filter we illuminate the cell by a blue light H_{β} of wavelength $\lambda=486.13 \mathrm{~nm}$. The generator G is adjusted so that the anode (A) captures all the emitted electrons by the cathode of quantum efficiency $\mathrm{r}=0.875 \%$.

Figure 1
a) Show that the received power of the radiation P_{0} of the cell is $2.04 \times 10^{-5} \mathrm{~W}$.
b) Determine the number N_{0} of the incident photons received by the cathode C in one second.
c) Determine the current in the circuit.

The aim of this exercise is to study the motion of a compound pendulum.
Consider a compound pendulum (P) consists:

- of a straight and homogeneous rod (R) of length $A B=\ell$ and of mass m ;
- of a solid (S), taken as a particle of mass m_{1}, free to slide along the part OB of the rod, O being the midpoint of the rod.
We fix (S) at a point C such that $\overline{\mathrm{OC}}=x(x>0)$.
(P) can oscillate, in a vertical plane, around a horizontal axis (Δ) perpendicular to the rod at O (figure 1).
(P) is shifted from its equilibrium position by a small angle θ_{m} then released without initial velocity at the instant $\mathrm{t}_{0}=0$, the pendulum oscillate then, without friction, around its equilibrium position.

At the instant t, the angular elongation of the pendulum is θ and its angular velocity is $\theta^{\prime}=\frac{d \theta}{d t}$.
Given: moment of inertia of the rod about the axis of rotation $(\Delta): \mathrm{I}_{0}=\frac{1}{12} \mathrm{~m} \ell^{2}, \mathrm{~m}=3 \mathrm{~m}_{1}$,
$\ell=0.5 \mathrm{~m}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\pi^{2}=10$.
For small $\theta: \cos \theta \approx 1-\frac{\theta^{2}}{2}$ and $\sin \theta \approx \theta(\theta$ in rd).
G is the center of inertia of the pendulum and the horizontal plane passing through O is taken as reference level of the gravitational potential energy.

1) Show that:
a) $\overline{\mathrm{OG}}=\frac{x}{4}$;
b) The expression of the moment of inertia of the pendulum is: $I=\frac{m}{12}\left(\ell^{2}+4 x^{2}\right)$.
2) Determine the expression the mechanical energy of the system (pendulum, Earth) in terms of θ, θ^{\prime}, m, x and ℓ.
3) a) Establish the second order differential equation in θ which governs the oscillations of the pendulum.
b) Deduce that the expression of the proper period of the pendulum is: $\mathrm{T}_{0}=\sqrt{\frac{4 \mathrm{x}^{2}+\ell^{2}}{\mathrm{x}}}$.
4) a) Determine the value of x for which T_{0} is minimum.
b) Deduce that $\mathrm{T}_{0(\min)}=1.41 \mathrm{~s}$.
5) Using a coupling device, the pendulum (P) plays the role of an exciter for a simple pendulum $\left(\mathrm{P}_{1}\right)$ of length $\ell_{1}=65 \mathrm{~cm}$. The oscillations of (P) and $\left(\mathrm{P}_{1}\right)$ are slightly damped.
a) Knowing that the proper period of the simple pendulum, for small oscillation, is $\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}$,

Calculate the value of the proper period T_{01} of $\left(\mathrm{P}_{1}\right)$.
b) i) (P) oscillates now with its minimum period. It is noticed that $\left(\mathrm{P}_{1}\right)$ does not enter in amplitude resonance with (P). Justify.
ii) We move (S) between O and B. For a value x_{0} of x , we notice that $\left(\mathrm{P}_{1}\right)$ oscillates with large amplitude. Calculate the value of x_{0}.

دورة العـام 2016 العاديّة الاثثين 13 حزيران 2016	امتحانـات الثشهادة الثانويةّ العامة الفرع : علوم عامة	وزارة التربيةّ والتتعليم العاللي المديريـة العامة للتربية دائرة الامتحاتـات
الرقم: الاسم:	مسابقة في مادة الفيزياء المدة ثلاث ساعات	مشروع معيار التصحيح

First exercise (7.5 points)

Part of the \mathbf{Q}	Answer	Mark
1	The forces acting on the skier : - Normal reaction \vec{N}; - Weight $m \vec{g}$; - The frictional force \vec{f} Diagram.	3/4
2.a	$\vec{P}=\mathrm{M} \vec{V}$ since $\vec{V}=\overrightarrow{C t e} \Rightarrow \vec{P}=\overrightarrow{\text { Cte }}$.	3/4
2.b	$\frac{d \vec{P}}{d t}=\overrightarrow{M g}+\vec{N}+\vec{f}=\overrightarrow{0} \quad$ project along x'x: $\operatorname{Mgsin} \alpha-\mathrm{f}=0$ $\Rightarrow \mathrm{f}=\mathrm{Mg} \sin \alpha=400 \mathrm{~N}$.	1
3.a	$\begin{aligned} & \frac{d \vec{P}}{d t}=\overrightarrow{M g}+\vec{f}+\vec{N}+\vec{f}_{1}=\frac{\Delta \vec{P}}{\Delta t} \\ & \text { Project along } \mathrm{x} \mathrm{x} \Rightarrow-f_{1}=\frac{M V_{B}-M V_{A}}{\Delta t}=-\frac{M V_{A}}{\Delta t} \Rightarrow f_{1}=800 \mathrm{~N} . \\ & \text { Or }: \frac{\Delta \overrightarrow{\mathrm{P}}}{\Delta \mathrm{t}}=\sum \overrightarrow{\mathrm{F}}_{\mathrm{ext}} \Rightarrow \frac{\overrightarrow{\mathrm{P}}_{\mathrm{o}}-\overrightarrow{\mathrm{P}}_{\mathrm{A}}}{\Delta \mathrm{t}}=\sum \overrightarrow{\mathrm{F}}_{\mathrm{ext}} \end{aligned}$ Project along $\mathrm{x}^{\prime} \mathrm{x}: \frac{0-\mathrm{MV}_{A}}{\Delta \mathrm{t}}=\mathrm{Mg} \sin \alpha-\mathrm{f}-\mathrm{f}_{1}=0-\mathrm{f}_{1}=-\mathrm{f}_{1} \Rightarrow \mathrm{f}_{1}=800 \mathrm{~N}$	1
3.b	Because friction and braking forces	1/2
3.c	$\begin{aligned} & \Delta \mathrm{M} \cdot \mathrm{E}=\mathrm{W}(\vec{f})+\mathrm{W}\left(\vec{f}_{1}\right) \Rightarrow \mathrm{M} \cdot \mathrm{E}_{\mathrm{B}}-\mathrm{M} \cdot \mathrm{E}_{\mathrm{A}}=\mathrm{W}(\vec{f})+\mathrm{W}\left(\vec{f}_{1}\right) \Rightarrow \\ & -1 / 2 \mathrm{MV}^{2}-\mathrm{Mg} \mathrm{AB} \sin \alpha=-\mathrm{f} . \mathrm{AB}-\mathrm{f}_{1} \cdot \mathrm{AB} \\ & \Rightarrow(40 \times 900)+(400 \times \mathrm{AB})=1200 \times \mathrm{AB} \Rightarrow \mathrm{AB}=45 \mathrm{~m} . \end{aligned}$	1
4.a.i	$\Delta \mathrm{GPE}=\mathrm{GPE}_{\mathrm{B}}-\mathrm{GPE}_{\mathrm{A}}=0-\mathrm{Mg} \mathrm{AB} \sin \alpha=-\mathrm{Mg} \mathrm{AB} \sin \alpha=-1800 \mathrm{~J}$	3/4
4.a.ii	$\mathrm{W}(M \vec{g})=\mathrm{Mgh}=\mathrm{Mg} \mathrm{AB} \sin \alpha=1800 \mathrm{~J}$	1/2
4.b	$\Delta(\mathrm{GPE})=-\mathrm{W}(M \vec{g})$.	1/4
5	$\begin{aligned} & \Delta \mathrm{M} \cdot \mathrm{E}=\Delta \mathrm{K} \cdot \mathrm{E}+\Delta \mathrm{GP} \cdot \mathrm{E}=\mathrm{W}(\vec{f})+\mathrm{W}\left(\vec{f}_{1}\right) \\ & \Rightarrow \Delta \mathrm{K} \cdot \mathrm{E}=\mathrm{W}(M \vec{g})+\mathrm{W}(\vec{f})+\mathrm{W}\left(\vec{f}_{1}\right) \\ & \text { since } \mathrm{W}(\vec{N})=0 \Rightarrow \Delta \mathrm{~K} \cdot \mathrm{E}=\sum \mathrm{W}_{\overrightarrow{\mathrm{F}}_{\mathrm{ex}}} \\ & \text { Or }: \Delta \mathrm{M} \cdot \mathrm{E}=\Delta \mathrm{K} \cdot \mathrm{E}+\Delta \mathrm{GP} \cdot \mathrm{E}=\mathrm{W}(\vec{f})+\mathrm{W}\left(\vec{f}_{1}\right) \\ & \Rightarrow \Delta \mathrm{K} \cdot \mathrm{E} \cdot \mathrm{~W}(\vec{f})+\mathrm{W}\left(\vec{f}_{1}\right)-\Delta \mathrm{GP} \cdot \mathrm{E}=\mathrm{W}(\vec{f})+\mathrm{W}\left(\vec{f}_{1}\right)+\mathrm{W}(M \vec{g}) \\ & \text { Or } \mathrm{W}(\vec{N})=0 \Rightarrow \Delta \mathrm{~K} \cdot \mathrm{E} \cdot=\sum \mathrm{W}_{\overrightarrow{\mathrm{F}}_{\mathrm{ext}}} \end{aligned}$	1

Second exercise (7.5 points)

Part of the Q	Answer	Mark
A.1.a	$\mathrm{u}_{\mathrm{BD}}=\mathrm{u}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=-\mathrm{LL} \omega \sqrt{2} \sin \left(\omega t-\frac{\pi}{2}\right)$	$3 / 4$
A.1.b	$\mathrm{u}_{\mathrm{AM}}=\mathrm{u}_{\mathrm{BD}} \Rightarrow-\mathrm{LI} \omega \sqrt{2} \sin \left(\omega \mathrm{t}-\frac{\pi}{2}\right)=\mathrm{U} \sqrt{2} \cos \omega \mathrm{t} \Rightarrow \mathrm{LI} \omega \sqrt{2} \cos \left(\frac{\pi}{2}+\omega \mathrm{t}-\frac{\pi}{2}\right)=\mathrm{U} \sqrt{2} \cos \omega \mathrm{t}$ By comparison: $\mathrm{U} \sqrt{2}=\mathrm{LI} \omega \sqrt{2} \Rightarrow \mathrm{~L}=0.032 \mathrm{H}=32 \mathrm{mH}$. Or: $-\mathrm{LI} \omega \sqrt{2} \sin \left(\omega \mathrm{t}-\frac{\pi}{2}\right)=\mathrm{U} \sqrt{2} \cos \omega \mathrm{t}$ For $\mathrm{t}=0: \mathrm{U} \sqrt{2}=\mathrm{LI} \omega \sqrt{2} \Rightarrow \mathrm{~L}=0.032 \mathrm{H}=32 \mathrm{mH}$.	$3 / 4$
A.2.a	$\mathrm{i}=\mathrm{C} \frac{\mathrm{du}_{\mathrm{C}}}{\mathrm{dt}} \Rightarrow \mathrm{u}_{\mathrm{C}}=\frac{1}{\mathrm{C}} \int \mathrm{idt}=\frac{\mathrm{I} \sqrt{2}}{\mathrm{C} \omega} \sin (\omega \mathrm{t}+\varphi)$	$3 / 4$
A.2.b	$\mathrm{u}_{\mathrm{AM}}=\mathrm{u}_{\mathrm{BD}} \Rightarrow \mathrm{U} \sqrt{2} \cos \omega \mathrm{t}=\frac{\mathrm{I} \sqrt{2}}{\mathrm{C} \omega} \sin \left(\omega \mathrm{t}+\frac{\pi}{2}\right) \Rightarrow \mathrm{U} \sqrt{2} \cos \omega \mathrm{t}=\frac{\mathrm{I} \sqrt{2}}{\mathrm{C} \omega} \cos \left(\frac{\pi}{2}-\omega \mathrm{t}-\frac{\pi}{2}\right)$ By comparison: $\mathrm{U} \sqrt{2}=\frac{\mathrm{I} \sqrt{2}}{\mathrm{C} \omega} \Rightarrow \mathrm{C}=3.2 \times 10^{-6} \mathrm{~F}=3.2 \mu \mathrm{~F}$ Or : $\mathrm{u}_{\mathrm{AM}}=\mathrm{u}_{\mathrm{BD}} \Rightarrow \mathrm{U} \sqrt{2} \cos \omega \mathrm{t}=\frac{\mathrm{I} \sqrt{2}}{\mathrm{C} \omega} \sin \left(\omega \mathrm{t}+\frac{\pi}{2}\right)$ For $\mathrm{t}=0: \mathrm{U} \sqrt{2}=\frac{\mathrm{I} \sqrt{2}}{\mathrm{C} \omega} \sin \left(\frac{\pi}{2}\right) \Rightarrow \mathrm{C}=3.2 \times 10^{-6} \quad \mathrm{~F}=3.2 \mu \mathrm{~F}$	$3 / 4$
B. 1	Connections of the oscilloscope	$1 / 4$
B. 2	$\begin{aligned} & \mathrm{u}_{\mathrm{AM}}=\mathrm{u}_{\mathrm{AB}}+\mathrm{u}_{\mathrm{BD}}+\mathrm{u}_{\mathrm{DM}} \Rightarrow \\ & \mathrm{U} \sqrt{2} \cos \omega \mathrm{t}=-\mathrm{LI} \omega \sqrt{2} \sin (\omega \mathrm{t}+\varphi)+\frac{\mathrm{I} \sqrt{2}}{\mathrm{C} \omega} \sin (\omega \mathrm{t}+\varphi)+\mathrm{RI} \sqrt{2} \cos (\omega \mathrm{t}+\varphi) \\ & \text { For } \omega \mathrm{t}=\frac{\pi}{2} \Rightarrow 0=-\mathrm{LI} \sqrt{2} \cos \varphi+\frac{\mathrm{I} \sqrt{2}}{\mathrm{C} \omega} \cos \varphi-\mathrm{RI} \sqrt{2} \sin \varphi \Rightarrow \tan \varphi=\frac{\frac{1}{\mathrm{C} \omega}-\mathrm{L} \omega}{\mathrm{R}} \end{aligned}$	1
B.3.a	$\mathrm{T}=4 \mathrm{~ms} \Rightarrow \mathrm{f}=\frac{1}{\mathrm{~T}}=250 \mathrm{~Hz}$.	1/2
B.3.b	$\|\varphi\|=\frac{2 \pi}{8}=\frac{\pi}{4} \mathrm{rad}$.	1/2
B.4.a	Current resonance	1/4
B.4.b	$\varphi=0 \Rightarrow \tan \varphi=0 \Rightarrow \frac{1}{\mathrm{C} \omega_{0}}=\mathrm{L} \omega_{0} \Rightarrow \mathrm{LC}=\frac{1}{\omega_{0}^{2}}$.	$1 / 2$
B. 5	$\begin{aligned} & \varphi=\frac{\pi}{4} \Rightarrow 1=\frac{\frac{1}{\mathrm{C} \omega}-\mathrm{L} \omega}{\mathrm{R}} \Rightarrow \mathrm{C}=\frac{1-\mathrm{LC} \omega^{2}}{\mathrm{R} \omega}=3.2 \times 10^{-6} \mathrm{~F}=3.2 \mu \mathrm{~F} \\ & \Rightarrow \mathrm{LC}=\frac{1}{\omega_{0}^{2}} \Rightarrow \mathrm{~L}=\frac{1}{\mathrm{C} \omega_{0}^{2}}=32 \mathrm{mH} \end{aligned}$	$1^{11 / 2}$

Third exercise (7.5 points)

Part of the Q	Answer	Mark
A.I. 1	λ, λ_{0} and n^{2} are positive $\Rightarrow \mathrm{n}^{2}-4>0 \Rightarrow \mathrm{n}>2 \Rightarrow$ the smallest value is $\mathrm{n}=3$.	1/2
A.I. 2	$\lambda=\lambda_{0} \frac{\mathrm{n}^{2}}{\mathrm{n}^{2}-4} \Rightarrow \lambda=656.46 \mathrm{~nm}$	1/2
A.I. 3	In these conditions: $\begin{array}{lll} \mathrm{n}=4 & \text { gives } \lambda=486.13 \mathrm{~nm} \\ \mathrm{n}=5 & \text { gives } \lambda=435.05 \mathrm{~nm} \\ \mathrm{n}=6 & \text { gives } \lambda=410.17 \mathrm{~nm} \end{array}$	$3 / 4$
A.II. 1	Ground state $\mathrm{n}=1: \mathrm{E}_{1}=-13.6 \mathrm{eV}$.	1/2
A.II. 2	$\begin{aligned} & 1^{\text {st }} \text { energy level (excited): } n=2: \quad E_{2}=-\frac{13.6}{2^{2}}=-3.4 \mathrm{eV} \\ & \mathrm{E}_{3}=-1.51 \mathrm{eV} ; \quad \mathrm{E}_{4}=-0.85 \mathrm{eV} ; \quad \mathrm{E}_{5}=-0.54 \mathrm{eV} \quad \text { and } \mathrm{E}_{6}=-0.38 \mathrm{eV} \end{aligned}$	$111 / 4$
A.II. 3	The atom is ionized when $\mathrm{n} \rightarrow \infty \Rightarrow \mathrm{E}_{\infty}=0$	1/2
B. 1	$\mathrm{W}_{0}=\frac{h c}{\lambda_{0}} \Rightarrow \lambda_{0}=\frac{h c}{W_{0}}=5.65 \times 10^{-7} \mathrm{~m}=565 \mathrm{~nm}$	3/4
B. 2	The radiations of Balmer series that can produce photoelectric emission verifies the relation $\lambda\left\langle\lambda_{0}\right.$; $\mathrm{H}_{\beta}, \mathrm{H}_{\gamma}$ and H_{δ} produce this emission because $\lambda\left\langle\lambda_{0}\right.$	1/2
B.3.a	$\mathrm{P}_{0}=\frac{\mathrm{P}_{\mathrm{S}} \times \mathrm{s}}{4 \pi \mathrm{D}^{2}}=2.04 \times 10^{-5} \mathrm{~W}$	$3 / 4$
B.3.b	$\mathrm{N}_{0 / \mathrm{s}}=\frac{\mathrm{P}_{0}}{\mathrm{E}_{\text {photon }}}=\frac{\mathrm{P}_{0} \times \lambda_{\beta}}{\mathrm{h} \times \mathrm{c}}=4.99 \times 10^{13} \text { photons } / \mathrm{s}$	$3 / 4$
B.3.b	The number of effective photons = number of emitted electrons N_{e} $\begin{aligned} & \Rightarrow N_{\mathrm{e}}=\mathrm{r} \times \mathrm{N}_{0}=4.37 \times 10^{11} \text { electrons } / \mathrm{s} \\ & \mathrm{I}_{0}=\frac{\mathrm{q}}{\mathrm{t}}=\frac{\mathrm{N}_{\mathrm{e}} \mathrm{e}}{\mathrm{t}}=6.99 \times 10^{-8} \mathrm{~A} \end{aligned}$	$3 / 4$

Fourth exercise (7.5 points)

Part of the Q	Answer	Mark
1.a	$\left(\mathrm{m}+\mathrm{m}_{1}\right) \overrightarrow{\mathrm{OG}}=\mathrm{m} \overrightarrow{\mathrm{OO}}+\mathrm{m}_{1} \overrightarrow{\mathrm{OM}} \Rightarrow \overrightarrow{O G}=\frac{x}{4}$	1/2
1.b	$\mathrm{I}_{(\mathrm{sys})}=\mathrm{I}_{(\mathrm{rod})}+\mathrm{I}_{(\mathrm{S})} \Rightarrow \mathrm{I}=\frac{1}{12} m \ell^{2}+\frac{m}{3} x^{2}=\frac{m}{12}\left(4 x^{2}+\ell^{2}\right)$	1/2
2	$\mathrm{ME}=\frac{1}{2} \mathrm{I} \theta^{\prime 2}-\left(\mathrm{m}+\mathrm{m}_{1}\right) \mathrm{gOG} \cos \theta=\frac{\mathrm{m}}{24}\left(4 \mathrm{x}^{2}+\ell^{2}\right) \theta^{\prime 2}-\frac{\mathrm{m}}{3} \mathrm{gx} \cos \theta$	$3 / 4$
3.a	$\begin{aligned} & \text { ME }=\text { Cte } \Rightarrow \frac{\mathrm{dME}}{\mathrm{dt}}=0 \Rightarrow \frac{\mathrm{~m}}{12}\left(4 \mathrm{x}^{2}+\ell^{2}\right) \theta^{\prime} \theta^{\prime \prime}+\frac{\mathrm{m}}{3} \mathrm{gx} \theta^{\prime} \sin \theta=0, \theta^{\prime} \neq 0 \\ & \text { For small angle } \sin \theta \approx \theta(\mathrm{rd}) \Rightarrow \theta^{\prime \prime}+\left(\frac{4 \mathrm{gx}}{4 \mathrm{x}^{2}+\ell^{2}}\right) \theta=0 . \end{aligned}$	$3 / 4$
3.b	This differential equation has the form: $\theta^{\prime \prime}+\omega_{0}^{2} \theta=0 \Rightarrow \omega_{0}=\sqrt{\frac{4 g x}{4 x^{2}+\ell^{2}}} \Rightarrow T_{0}=\sqrt{\frac{4 x^{2}+\ell^{2}}{x}}$	1/2
4.a	$\frac{d T_{0}}{d x}=\frac{1}{2}\left(\frac{4 x^{2}-\ell^{2}}{x^{2}}\right)\left(\frac{4 x^{2}+\ell^{2}}{\mathrm{x}}\right)^{-\frac{1}{2}} ; \mathrm{T}_{0}$ is minimum when $\frac{\mathrm{dT}_{0}}{\mathrm{dx}}=0$ for x $\left.\in] 0, \frac{\ell}{2}\right] \Rightarrow 4 \mathrm{x}^{2}-\ell^{2}=0$; then T_{0} is minimal for $4 \mathrm{x}^{2}=\ell^{2} \Rightarrow \mathrm{x}=\frac{\ell}{2}$.	$1^{11 / 2}$
4.b	$\mathrm{T}_{0}=\sqrt{\frac{\ell^{2}+\ell^{2}}{\frac{\ell}{2}}}=2 \sqrt{\ell}=1.41 \mathrm{~s}$	1/2
5.a	$\mathrm{T}_{01}=2 \pi \sqrt{\frac{\ell_{1}}{\mathrm{~g}}}=1.61 \mathrm{~s}$	1/2
5.b.i	The phenomenon of amplitude resonance will take place when the proper period of the exciter becomes equal (very close) of that of the resonator. As $\mathrm{T}_{0}=1.41 \mathrm{~s}$ of (P) is smaller than $\mathrm{T}_{01}=1.61 \mathrm{~S}$ of $\left(\mathrm{P}_{1}\right)$, therefore the phenomenon of resonance does not take place	1/2
5.b.ii	$\left(\mathrm{P}_{1}\right)$ oscillates with large amplitude, therefore it is in resonance of amplitude with (P); and then the proper period of (P) is equal to $\mathrm{T}_{01}=1.61 \mathrm{~s} .4 \mathrm{x}^{2}-(1,61)^{2} \mathrm{x}+\ell^{2}=0$ \Rightarrow The solution of this quadratic equation gives; $\mathrm{x}_{1}=53 \mathrm{~cm}$ (rejected because it is $>$ than $\frac{\ell}{2}=25 \mathrm{~cm}$) and $\mathrm{x}_{2}=11.75 \mathrm{~cm}$ (accepted)	$1^{11 / 2}$

