الدورة العادية للعام 2012	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة ثلاث ساعات	

This exam is formed of four exercises in four pages numbered from 1 to 4. The use of a non-programmable calculator is recommended.

<u>First exercise</u>: (8 points) Oscillation and rotation of a mechanical system

A rigid rod AB, of negligible mass and of length L = 2 m, may rotate, without friction, around a horizontal axis (Δ) perpendicular to the rod through its midpoint O. On this rod, and on opposite sides of O, two identical particles (S) and (S'), each of mass m = 100 g, may slide along AB. **Take:** the gravitational acceleration on the Earth g = 9.8 m/s²;

for small angles:
$$\cos \theta = 1 - \frac{\theta^2}{2}$$
 and $\sin \theta = \theta$ in rad.

A – Oscillatory motion

The particle (S) is fixed on the rod at point C at a distance OC = $\frac{L}{4}$ and the particle

(S') is fixed at point B (Fig. 1). G is the center of gravity of the system (P) formed of the rod and the two particles. Let OG = a and I_0 be the moment of inertia of (P) with respect to the axis (Δ).

We shift (P) by a small angle θ_m , about (Δ), from its stable equilibrium position, in the positive direction as shown on the figure, and then released without initial velocity at the instant t₀= 0; (P) thus oscillates, around the axis (Δ) with a proper period T. At an instant t, the angular abscissa of the compound pendulum, thus formed, is θ ; (θ is the angle formed between the rod and the vertical passing

through O), and its angular velocity is $\theta' = \frac{d\theta}{dt}$. We neglect all frictional forces and

take the horizontal plane through O as a gravitational potential energy reference.

1) Show that $a = \frac{L}{8}$.

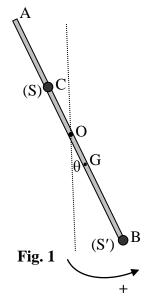
2) Show that $I_0 = \frac{5mL^2}{16}$.

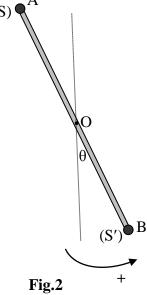
- 3) Write, at an instant t, the expression of the mechanical energy of the system [Earth, (P)] in terms of I₀, m, a, g, θ and θ' .
- 4) Derive the second order differential equation in θ that describes the motion of (P).
- 5) Deduce, in terms of L and g, the expression of T. Calculate its value on the the Earth.
- 6) The system (P) oscillates now on the Moon. In this case, the proper period, for small oscillations, is T'. Compare, with justification, T' and T.

B – Rotational motion

In this part, the particles (S) and (S') are fixed at A and B respectively (Fig.2). At the instant $t_0 = 0$, we launch the system (P') thus formed, around (Δ) with an initial angular velocity $\theta'_0 = 2$ rad/s; (P') then turns, in the vertical plane around (Δ). At an instant t, the angular abscissa of the rod, with respect to the vertical passing through O, is θ , and its angular velocity is $\theta' = \frac{d\theta}{dt}$. During rotation, (P') is acted

upon by a couple of forces of friction whose moment, with respect to (Δ) is $M = -h \theta'$, where h is a positive constant.





- 1) Give the name, at an instant t, of the couple and the forces acting on (P').
- 2) Show that the resultant moment of the couple and of the forces, with respect to (Δ), is equal to the moment $M = -h \theta'$.
- 3) Show that the moment of inertia of (P') about (Δ) is I = 0.2 kgm².
- 4) Using the theorem of angular momentum $\frac{d\sigma}{dt} = \Sigma M_{ext}$, show that the differential equation in σ is written as :

 $\frac{d\sigma}{dt} + \frac{h}{I}\sigma = 0$, σ is the angular momentum of (P'), about (Λ)

- **5**) Verify that $\sigma = \sigma_0 e^{-\frac{h}{I}t}$ is a solution of the differential equation [σ_0 is the angular momentum of (P'), about (Δ), at the instant t₀ = 0].
- 6) The variation of σ as a function of time, is represented by the curve of figure 3. On this figure, we draw the tangent to the curve at point D at the instant $t_0 = 0$.
 - a) The curve of figure 3 is in agreement with the solution of the differential equation. Why?
 - **b**) Determine the value of h.

Second exercise: (6.5 points) Charging and discharging of a capacitor

We set up the circuit whose diagram is represented in figure 1, G is a generator of constant e.m.f E = 10 V and of negligible internal resistance, (C) is a capacitor, initially uncharged, of capacitance C = 1 F, (D) is a resistor of resistance $R = 10 \Omega$, K is a switch and M is an electric motor whose axis is wrapped by a string of negligible mass and carrying a solid of mass m = 1 kg (Fig. 1). Take $g = 10 \text{ m/s}^2$.

A – Charging of the capacitor

- K is in position 1 at the instant $t_0 = 0$.
- 1) Determine the differential equation that describes the variation of the voltage $u_{AN} = u_C$ across the capacitor.
- 2) The solution of the differential equation is of the form:

 $u_C = A + B e^{-\frac{t}{\tau}}$ where A, B and τ are constants.

Determine the expressions of A, B and τ in terms of E, R and C.

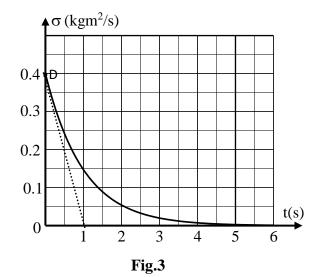
- 3) At the end of charging:
 - **a**) deduce the value of the voltage u_C ;
 - **b**) calculate, in J, the energy stored in the capacitor.

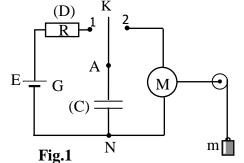
B – Discharging of the capacitor through the motor

The capacitor being totally charged, we turn the switch K to the position 2 at an instant taken as a new origin of time. During a time t_1 , the solid is raised by height h = 1.5 m. At the instant t_1 , the voltage across the capacitor is $u_C = u_1$. The variation of the voltage u_C across the capacitor during discharging through the motor between the instants 0 and t₁ is represented by the curve of figure 2.

1) Referring to figure 2:







- **a**) give the value of t_1 , at which the voltage u_C attains the minimum value u_1 ;
- **b**) give the value of the voltage u₁.
- 2) At the instant t_1 , the capacitor still stores energy W_1 .
 - a) Tell why.
 - **b**) Calculate the value of W_1 .
- 3) Assume that the energy yielded by the capacitor is received by the motor.
 - a) Calculate the value of the energy W_2 yielded by the capacitor between the instants 0 and t_1 .
 - **b**) To what forms of energy is W₂ transformed?
 - c) Determine the efficiency of the motor.

Third exercise:(8 points)Electromagnetic oscillations

An electric circuit is formed of a generator of constant e.m.f. E = 10 V and of negligible internal resistance, a capacitor, initially uncharged and of capacitance $C = 10^{-3}$ F, a coil of inductance L = 0.1 H and of negligible resistance and a rheostat of variable resistance R. In order to study the effect of R on the electric oscillations of an

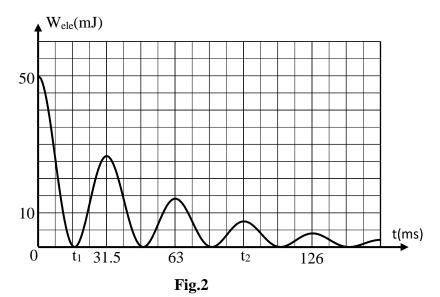
(R, L, C) circuit, we connect the circuit represented in figure (1).

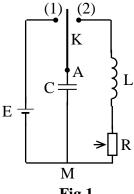
- \mathbf{A} The switch is in position (1).
 - 1) Give the name of the physical phenomenon that takes place in the electric circuit.
 - 2) After closing the circuit for a sufficient time, specify the value of:
 - a) the current;
 - **b**) the voltage $u_{AM} = u_C$ across the capacitor;
 - c) the electric energy W_{ele} stored in the capacitor.
- **B** The capacitor being totally charged, we turn the switch to position (2) at an instant $t_0 = 0$ taken as an origin of time.
- I The resistance of the rheostat is regulated at a value R = 0.
 - 1) Derive the differential equation of the variation of $u_C = u_{AM}$ as a function of time.
 - 2) The solution of the differential equation is of the form $u_c = E \cos(\frac{2\pi}{T_0}t)$.
 - a) Determine, in terms of L and C, the expression of the proper period T_0 of the free electric oscillations that take place in the circuit.
 - **b**) Calculate the value of T_0 .
 - 3) Express, as a function of time, the electric energy W_{ele} stored in the capacitor.
 - 4) The electric energy W_{ele} is a periodic function of period T'. Write the relation between T'and T₀.
 - 5) Calculate the electric energy stored in the capacitor at the instant $t_0 = 0$.
 - 6) Trace the shape of the graph of W_{ele} as a function of time.
- II The rheostat is regulated at a small resistance R. The variation of the electric energy

 W_{ele} as a function of time is represented in figure (2).

Referring to this figure:

- 1) give the name of the type of the electric oscillations;
- determine the value of the pseudoperiod T of the electric oscillations;
- 3) justify that at the instants:
 0; 31.5 ms; 63 ms; t₂ = 94.5 ms;
 126 ms, the total energy stored in the circuit is electric;





- 4) specify the form of the energy in the circuit at the instant t₁;
- 5) specify, between the instants $t_0 = 0$ and t = 31.5 ms, the time interval during which the:
 - coil provides energy to the circuit;
 - capacitor provides energy to the circuit;
- **6**) calculate the energy dissipated in the rheostat between the instants $t_0 = 0$ and t_2 .

III – What will happen if the resistance of the rheostat is very large?

Fourth exercise: (7.5 points) Spectrum of the hydrogen atom

Rydberg found in 1885 an empirical formula that gives the wavelengths of the lines of Balmer series; other series are discovered after that date.

An atom in an excited state n, passes to a lower energy state m, emits electromagnetic rays of wavelength λ , such that:

$$\frac{1}{\lambda} = R \left(\frac{1}{m^2} - \frac{1}{n^2} \right), \ \lambda \text{ in meter and } R = 1.097 \times 10^7 \text{m}^{-1}.$$

Given: Speed of light in vacuum $c = 2.998 \times 10^8 \text{m/s}$;

Planck's constant $h = 6.626 \times 10^{-34}$ J.s; 1 ev = 1.60×10⁻¹⁹J.

1) Show that the energy E_n of the hydrogen atom, corresponding to an energy level n, can be expressed as $E_n = -\frac{hcR}{2}$.

expressed as
$$E_n = -\frac{nerc}{n^2}$$
.

- 2) Deduce that the energy E_n , expressed in eV, may be written in the form $E_n = -\frac{13.6}{n^2}$.
- **3**) Calculate the value of the:
 - a) maximum energy of the hydrogen atom;
 - **b**) minimum energy of the hydrogen atom ;
 - c) energy of the hydrogen atom in the first excited state E_2 ;
 - d) energy of the atom in the second excited state E_3 .
- 4) Deduce that the energy of the atom is quantized.
- 5) Give three characteristics of a photon.
- 6) a) Define the ionization energy W_i of the hydrogen atom, found in the ground state.
 b) Calculate the value of W_i.
 - c) Calculate the value of the wavelength of the radiation capable of producing this ionization.
- 7) The Lyman series corresponds to the lines emitted by the excited hydrogen atom in a downward transition to the fundamental state.
 - a) Determine the shortest and the longest wavelengths of this series.
 - **b**) To what domain (visible, infrared, ultraviolet) does it belong?
- 8) a) Calculate the frequencies $v_{3\to 1}$, $v_{2\to 1}$, and $v_{3\to 2}$ of the emitted photons corresponding respectively to the transitions $E_3 \rightarrow E_1$, $E_2 \rightarrow E_1$ and $E_3 \rightarrow E_2$ of the hydrogen atom.
 - **b**) Verify Ritz relation: $v_{3\rightarrow 1} = v_{3\rightarrow 2} + v_{2\rightarrow 1}$.

أسس التصحيح لمادة الفيزياء
الدورة العادية 2012

الفرع : علوم عامة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

	First exercise : Oscillation and rotation of a mechanical system	8
Question	Answer	
A-1	$2\mathrm{ma} = \mathrm{m}\frac{\mathrm{L}}{2} - \mathrm{m}\frac{\mathrm{L}}{4} = \mathrm{m}\frac{\mathrm{L}}{4} \Longrightarrow \mathrm{a} = \frac{\mathrm{L}}{8}.$	1⁄2
A-2	$I_0 = m(\frac{L}{2})^2 + m(\frac{L}{4})^2 = \frac{5mL^2}{16}.$	1⁄2
A-3	$ME = KE + PE_g = \frac{1}{2} I_0 \theta^2 - 2mgacos\theta$	3⁄4
A-4	$\frac{\mathrm{dME}}{\mathrm{dt}} = 0 = \mathrm{I}_0 \theta^{'} \theta^{''} + 2\mathrm{mga}\theta^{'} \sin\theta \Longrightarrow \mathrm{I}_0 \theta^{''} + 2\mathrm{mga}\theta = 0 \Longrightarrow \theta^{''} + \frac{2\mathrm{mga}}{\mathrm{I}_0} \theta = 0.$	3⁄4
A–5	The proper pulsation of the pendulum $\omega = \sqrt{\frac{2 \text{mga}}{I_0}} \Rightarrow$ The period is $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I_0}{2 \text{mga}}} = 2\pi \sqrt{\frac{5mL^2 \times 8}{16 \times 2mg \times L}} = 2\pi \sqrt{\frac{5L}{4g}} = 2\pi \sqrt{\frac{5 \times 2}{4 \times 9.8}} = 3.17 \text{ s}.$	1
A – 6	$g(Moon) < g(Earth) \implies T(Moon) > T(Earth).$	1⁄2
B-1	The weight, the reaction of the axis and the couple of forces of friction.	1⁄4
B – 2	The weight and the reaction of the axis meet the axis, their moment is zero, the resultant moment is: $\Sigma M = M_{\text{couple}} = -h\theta'$. $\Rightarrow \Sigma M = M = -h\theta'$.	1⁄2
B – 3	$\Rightarrow \Sigma M = M = -h\theta'.$ I = 2 m($\frac{L}{2}$) ² = m $\frac{L^2}{2}$ = $\frac{0.1 \times 4}{2}$ = 0.2 kgm ² .	1⁄2
B – 4	$\frac{d\sigma}{dt} = \Sigma M_{ext} = M = -h\theta', \text{ and } \sigma = I\theta' \Rightarrow \frac{d\sigma}{dt} = -\frac{h}{I}\sigma$ $\Rightarrow \frac{d\sigma}{dt} + \frac{h}{I}\sigma = 0.$	3⁄4
B – 5	$\frac{d\sigma}{dt} = -\frac{h}{I}\sigma_0 e^{-\frac{h}{I}t} \Rightarrow -\frac{h}{I}\sigma_0 e^{-\frac{h}{I}t} + \frac{h}{I}\sigma_0 e^{-\frac{h}{I}t} = 0.$	1⁄2
B – 6 – a	Because at $t = 0$, $\sigma_0 = I \times \dot{\theta_0} = 0.2 \times 2 = 0.4 \text{ kgm}^2/\text{s}.$ decreasing curve and as $t \rightarrow 5\text{s}$, $\sigma \rightarrow 0$.	1⁄2
B – 6 – b	$\frac{d\sigma}{dt} = -\frac{h}{I}\sigma_0 e^{-\frac{h}{I}t}, \text{ at } t = 0, \ \frac{d\sigma}{dt} = -\frac{h}{I}\sigma_0 = -\frac{0.4}{1} \Longrightarrow h = \frac{0.4 \times 0.2}{0.4} = 0.2 \text{ S.I.}$	1

Second exercise : Charging and discharging of a capacitor		6 ½
Question	Answer	
A-1	$\mathbf{E} = \mathbf{R}\mathbf{i} + \mathbf{u}_{\mathrm{C}} = \mathbf{R}\mathbf{C}\frac{du_{\mathrm{C}}}{dt} + \mathbf{u}_{\mathrm{C}}$	1⁄2
A-2	$\frac{du_C}{dt} = -\frac{B}{\tau} e^{-\frac{t}{\tau}} \Rightarrow E = RC(-\frac{B}{\tau} e^{-\frac{t}{\tau}}) + A + Be^{-\frac{t}{\tau}} \Rightarrow A = E \text{ and } RC(-\frac{B}{\tau}) + B = 0$ $\Rightarrow \tau = RC \text{ . for } t = 0, u_C = 0 = A + B \Rightarrow B = -A = -E$	1 1⁄2
A–3–a	$u_{\rm C} = E (1 - e^{-\frac{t}{RC}}), \text{ for } t \rightarrow \infty, u_{\rm C} \rightarrow E = 10 \text{ V}.$	1⁄2
A-3-b	$W = \frac{1}{2} C E^2 = \frac{1}{2} (1) (100) = 50 J.$	1⁄2
B-1-a	$t_1 = 22 \text{ s.}$	1⁄4
B-1-b	$u_1 = 5 V.$	1⁄4
В-2-а	because $u_C = u_1 = 5 \ V \neq 0$.	3⁄4
В-2-b	$W_1 = \frac{1}{2} C(u_c)^2 = \frac{1}{2} (1) (5)^2 = 12.5 \text{ J}.$	1⁄2
В-3-а	$W_2 = W - W_1 = 50 - 12.5 = 37.5 J.$	1⁄2
B-3-b	Thermal and mechanical (kinetic)	1⁄4
В-3-с	$r = \frac{mgh}{W_2} = \frac{1 \times 10 \times 1.5}{37.5} = 40 \%.$	1

Third exercise : Electromagnetic Oscillations		8
Question	Answer	
A-1	Charging of the capacitor	1⁄4

Alah	i = 0;	
А-2-а-b- с	$u_{\rm C} = E = 10 {\rm V}$:	3⁄4
B-I-1	$W_{ele} = \frac{1}{2}CE^{2} = \frac{1}{2}(10^{-3})(100) = 0.05 \text{ J.}$ $u_{C} = u_{AM} = L\frac{di}{dt}, i = -C(u_{C})' \Rightarrow \frac{di}{dt} = -C(u_{C})'' \Rightarrow (u_{C})'' + \frac{1}{LC}u_{C} = 0$	1
B–I–2–a	$(\mathbf{u}_{\mathrm{C}})' = -\frac{2\pi}{T_0} E \sin \frac{2\pi}{T_0} t, (\mathbf{u}_{\mathrm{C}})'' = -(\frac{2\pi}{T_0})^2 E \cos \frac{2\pi}{T_0} t, \text{ replace in the differential equation}$ we get : $-(\frac{2\pi}{T_0})^2 E \cos \frac{2\pi}{T_0} t + \frac{1}{LC} \operatorname{Ecos} \frac{2\pi}{T_0} = 0 \Longrightarrow (\frac{2\pi}{T_0})^2 = \frac{1}{LC} \Longrightarrow T_0 = 2\pi\sqrt{LC}$	1
B-I-2-b	$T_0 = 2\pi \sqrt{10^{-4}} = 0.0628 \text{ s} = 62.8 \text{ ms}.$	1⁄4
B-I-3	$W_{ele} = \frac{1}{2} C(u_{c})^{2} = \frac{1}{2} CE^{2} \cos^{2}(\frac{2\pi}{T_{0}}t) = 0.05 \cos^{2}(100t).$	1⁄2
B-I-4	$T' = T_0/2.$	1⁄4
B-I-5	At $t_0 = 0$, $W_{ele} = 0.05$ J.	1⁄4
B-I–6		1⁄2
B–II–1	free-damped electric oscillations.	1⁄4
B –II–2	2T = 126 ms; T = 63 ms.	1⁄2
B –II–3	At the instants :0 ; 31.5 ms ; 63 ms ; 94.5 ms ; 126 ms ; the electric energy is maximum \Rightarrow u _C is max. \Rightarrow i = C(u _C) = 0 \Rightarrow magnetic energy E _{mag} = ½ L(i) ² is zero \Rightarrow E _{total} is electric.	3/4
B – II –4	Magnetic energy	1⁄4
	$0 < t < t_1$: W _{ele} decreases \Rightarrow the capacitor gives energy to the circuit.	
B –II –5	$t_1 < t < 31.5 \text{ ms}$: W_{ele} increases \Rightarrow the coil gives energy to the circuit.	1/2
B –II –6	W(dissipated) = 50 - 7.5 = 42.5 mJ.	1⁄2
B – III	The electric energy is lost quickly in the resistor and the mode is not oscillatory	1⁄2
	Fourth exercise : Spectrum of the hydrogen atom	
Question	Answer	
1	$E_{n} - E_{m} = \frac{hc}{\lambda} = hc \times R(\frac{1}{m^{2}} - \frac{1}{n^{2}}) \Longrightarrow E_{n} = -\frac{hcR}{n^{2}}$ hcR = 6.626×10 ⁻³⁴ ×2.998×10 ⁸ ×1.097×10 ⁷ (in J) = 21.79×10 ⁻¹⁹ J = 13.6 eV \Longrightarrow	3⁄4
2	hcR = $6.626 \times 10^{-34} \times 2.998 \times 10^8 \times 1.097 \times 10^7$ (in J) = 21.79×10^{-19} J = $13.6 \text{ eV} \Rightarrow$ $E_n = -\frac{13.6}{n^2}$ eV.	3⁄4

3—а	as $n \to \infty$, $E_{max} \to 0$.	1⁄4
3b	as $n \rightarrow 1$; $E_{min} = -13.6 \text{ ev}$	1⁄4
3-с	$E_2 = -\frac{13.6}{2^2} = -3.4 eV$	1⁄4
3–d	E_3 for $n = 3 \implies E_3 = -1.51 \text{ eV}.$	1⁄4
4	Only certain values of E_n (-13.6; -3.4; -1.51; -0.85) are allowed	1⁄4
5	The photon: no mass, no charge, speed in vacuum is c, of energy hv.	3⁄4
6–a	The ionization energy is the energy needed for the atom to absorb for it to release its electron without speed.	1/2
6–b	$W_i + (-13.6) = 0$; $W_i = 13.6 \text{ eV}$.	1⁄2
6–с	$\frac{1}{\lambda} = R(\frac{1}{m^2} - \frac{1}{n^2}) \text{ for } n \to \infty \text{ and } m = 1, \ \frac{1}{\lambda} = R = 1.097 \times 10^7 \Longrightarrow \lambda = 0.911 \times 10^{-7} \text{ m.}$ $\frac{1}{\lambda} = R(\frac{1}{m^2} - \frac{1}{n^2}) \text{ ; for } m = 1 \text{ and } n = 2, \text{ we obtain } \lambda_{max} = 0.121 \times 10^{-6} \text{m for } m = 1 \text{ and } n \to \infty,$	1⁄2
7–a	$\frac{1}{\lambda} = R(\frac{1}{m^2} - \frac{1}{n^2}) \text{ ; for } m = 1 \text{ and } n = 2, \text{ we obtain } \lambda_{max} = 0.121 \times 10^{-6} \text{m for } m = 1 \text{ and } n \rightarrow \infty,$ we obtain $\lambda_{min} = -0.091 \times 10^{-6} \text{m}.$	1⁄2
7–b	ultra-violet.	1/4
8–a	$\frac{1}{\lambda} = R(\frac{1}{m^2} - \frac{1}{n^2}) \text{ for } m=1 \text{ and } n=3, \ \frac{1}{\lambda} = R(\frac{1}{1^2} - \frac{1}{3^2}) = \frac{8}{9}R = 0.975 \times 10^7 \ v = \frac{c}{\lambda} \Rightarrow$ $v_{3\to 1} = 2.92 \times 10^{15} \text{ Hz.}$ for m=1 and n=2 on a $\frac{1}{\lambda} = R(\frac{1}{1^2} - \frac{1}{2^2}) = \frac{3}{4}R = 0.82275 \times 10^7 \Rightarrow v_{2\to 1} = 2.47 \times 10^{15} \text{ Hz.}$ for m =2 and n=3 on a $\frac{1}{\lambda} = R(\frac{1}{2^2} - \frac{1}{3^2}) = \frac{5}{36}R = 0.15236 \times 10^7 \Rightarrow$ $v_{3\to 2} = 0.46 \times 10^{15} \text{ Hz.}$	1 1/4
8b	$v_{3\rightarrow 1} = v_{3\rightarrow 2} + v_{2\rightarrow 1}$ is verified	1⁄2