اللورة العاديةّ للعام 2012	امتحانـات الثشهادة الثُثانويةٌ العامة الفرع : علوم عامة	وزارة التربيةّ والتتعليم الـعالّي المديريـة العامـة للتربية دائرة الامتحاتـات
الالرقم:	مسابقة في مادة الفيزياء المدة ثلاث ساعات	

This exam is formed of four exercises in four pages numbered from 1 to 4. The use of a non-programmable calculator is recommended.

First exercise: (8 points) Oscillation and rotation of a mechanical system

A rigid rod AB , of negligible mass and of length $\mathrm{L}=2 \mathrm{~m}$, may rotate, without friction, around a horizontal axis (Δ) perpendicular to the rod through its midpoint O . On this rod, and on opposite sides of O , two identical particles (S) and $\left(\mathrm{S}^{\prime}\right)$, each of mass $\mathrm{m}=100 \mathrm{~g}$, may slide along AB.
Take: the gravitational acceleration on the Earth $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$;
for small angles: $\cos \theta=1-\frac{\theta^{2}}{2}$ and $\sin \theta=\theta$ in rad.

A - Oscillatory motion

The particle (S) is fixed on the rod at point C at a distance $\mathrm{OC}=\frac{\mathrm{L}}{4}$ and the particle (S^{\prime}) is fixed at point B (Fig. 1). G is the center of gravity of the system (P) formed of the rod and the two particles. Let $\mathrm{OG}=\mathrm{a}$ and I_{0} be the moment of inertia of (P) with respect to the axis (Δ).
We shift (P) by a small angle θ_{m}, about (Δ), from its stable equilibrium position, in the positive direction as shown on the figure, and then released without initial velocity at the instant $\mathrm{t}_{0}=0$; (P) thus oscillates, around the axis (Δ) with a proper period T. At an instant t, the angular abscissa of the compound pendulum, thus formed, is θ; θ is the angle formed between the rod and the vertical passing through O), and its angular velocity is $\theta^{\prime}=\frac{\mathrm{d} \theta}{\mathrm{dt}}$. We neglect all frictional forces and take the horizontal plane through O as a gravitational potential energy reference.

1) Show that $\mathrm{a}=\frac{\mathrm{L}}{8}$.

Fig. 1

2) Show that $\mathrm{I}_{0}=\frac{5 \mathrm{~mL}^{2}}{16}$.
3) Write, at an instant t, the expression of the mechanical energy of the system [Earth, (P)] in terms of $\mathrm{I}_{0}, \mathrm{~m}, \mathrm{a}, \mathrm{g}, \theta$ and θ^{\prime}.
4) Derive the second order differential equation in θ that describes the motion of (P).
5) Deduce, in terms of L and g, the expression of T. Calculate its value on the the Earth.
6) The system (P) oscillates now on the Moon. In this case, the proper period, for small oscillations, is T^{\prime}. Compare, with justification, T^{\prime} and T .

B - Rotational motion

In this part, the particles (S) and (S^{\prime}) are fixed at A and B respectively (Fig.2).
At the instant $\mathrm{t}_{0}=0$, we launch the system $\left(\mathrm{P}^{\prime}\right)$ thus formed, around (Δ) with an initial angular velocity $\theta_{0}^{\prime}=2 \mathrm{rad} / \mathrm{s} ;\left(\mathrm{P}^{\prime}\right)$ then turns, in the vertical plane around (Δ). At an instant t, the angular abscissa of the rod, with respect to the vertical passing through O, is θ, and its angular velocity is $\theta^{\prime}=\frac{d \theta}{d t}$. During rotation, $\left(\mathrm{P}^{\prime}\right)$ is acted upon by a couple of forces of friction whose moment, with respect to (Δ) is $\mathrm{M}=-\mathrm{h} \theta^{\prime}$, where h is a positive constant.

Fig. 2

1) Give the name, at an instant t, of the couple and the forces acting on $\left(\mathrm{P}^{\prime}\right)$.
2) Show that the resultant moment of the couple and of the forces, with respect to (Δ), is equal to the moment $\mathrm{M}=-\mathrm{h} \theta^{\prime}$.
3) Show that the moment of inertia of $\left(\mathrm{P}^{\prime}\right)$ about (Δ) is $\mathrm{I}=0.2 \mathrm{kgm}^{2}$.
4) Using the theorem of angular momentum $\frac{\mathrm{d} \sigma}{\mathrm{dt}}=\Sigma \mathrm{M}_{\mathrm{ext}}$, show that the differential equation in σ is written as : $\frac{\mathrm{d} \sigma}{\mathrm{dt}}+\frac{\mathrm{h}}{\mathrm{I}} \sigma=0, \sigma$ is the angular momentum of $\left(\mathrm{P}^{\prime}\right)$, about (Δ).
5) Verify that $\sigma=\sigma_{0} e^{-\frac{h}{I} t}$ is a solution of the differential equation [σ_{0} is the angular momentum of $\left(\mathrm{P}^{\prime}\right)$, about (Δ), at the instant $\left.\mathrm{t}_{0}=0\right]$.
6) The variation of σ as a function of time, is represented by the curve of figure 3. On this figure, we draw the tangent to the curve at point D at the instant $\mathrm{t}_{0}=0$.
a) The curve of figure 3 is in agreement with the

Fig. 3 solution of the differential equation. Why?
b) Determine the value of h.

Second exercise: (6.5 points)

Charging and discharging of a capacitor

We set up the circuit whose diagram is represented in figure $1, \mathrm{G}$ is a generator of constant e.m.f $\mathrm{E}=10 \mathrm{~V}$ and of negligible internal resistance, (C) is a capacitor, initially uncharged, of capacitance $\mathrm{C}=1 \mathrm{~F},(\mathrm{D})$ is a resistor of resistance $\mathrm{R}=10 \Omega, \mathrm{~K}$ is a switch and M is an electric motor whose axis is wrapped by a string of negligible mass and carrying a solid of mass $\mathrm{m}=1 \mathrm{~kg}$ (Fig. 1). Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.
A - Charging of the capacitor
K is in position 1 at the instant $\mathrm{t}_{0}=0$.

1) Determine the differential equation that describes the variation of the voltage $u_{\mathrm{AN}}=u_{\mathrm{C}}$ across the capacitor.
2) The solution of the differential equation is of the form:
 $u_{C}=A+B e^{-\frac{t}{\tau}}$ where A, B and τ are constants.
Determine the expressions of A, B and τ in terms of E, R and C .
3) At the end of charging:
a) deduce the value of the voltage u_{c};
b) calculate, in J, the energy stored in the capacitor.

B - Discharging of the capacitor through the motor

The capacitor being totally charged, we turn the switch K to the position 2 at an instant taken as a new origin of time. During a time t_{1}, the solid is raised by height $\mathrm{h}=1.5 \mathrm{~m}$. At the instant t_{1}, the voltage across the capacitor is $u_{C}=u_{1}$.
The variation of the voltage u_{C} across the capacitor during discharging through the motor between the instants 0 and t_{1} is represented by the curve of figure 2.

1) Referring to figure 2 :

Fig. 2
a) give the value of t_{1}, at which the voltage u_{C} attains the minimum value u_{1};
b) give the value of the voltage u_{1}.
2) At the instant t_{1}, the capacitor still stores energy W_{1}.
a) Tell why.
b) Calculate the value of W_{1}.
3) Assume that the energy yielded by the capacitor is received by the motor.
a) Calculate the value of the energy W_{2} yielded by the capacitor between the instants 0 and t_{1}.
b) To what forms of energy is W_{2} transformed?
c) Determine the efficiency of the motor.

Third exercise: (8 points)

Electromagnetic oscillations

An electric circuit is formed of a generator of constant e.m.f. $\mathrm{E}=10 \mathrm{~V}$ and of negligible internal resistance, a capacitor, initially uncharged and of capacitance $\mathrm{C}=10^{-3} \mathrm{~F}$, a coil of inductance $\mathrm{L}=0.1 \mathrm{H}$ and of negligible resistance and a rheostat of variable resistance R .
In order to study the effect of R on the electric oscillations of an (R, L, C) circuit, we connect the circuit represented in figure (1).
A - The switch is in position (1).

1) Give the name of the physical phenomenon that takes place in the electric circuit.
2) After closing the circuit for a sufficient time, specify the value of:
a) the current;
b) the voltage $\mathrm{u}_{\mathrm{AM}}=\mathrm{u}_{\mathrm{C}}$ across the capacitor;

Fig. 1
c) the electric energy $\mathrm{W}_{\text {ele }}$ stored in the capacitor.
\mathbf{B} - The capacitor being totally charged, we turn the switch to position (2) at an instant $\mathrm{t}_{0}=0$ taken as an origin of time.
\mathbf{I} - The resistance of the rheostat is regulated at a value $\mathrm{R}=0$.

1) Derive the differential equation of the variation of $u_{C}=u_{A M}$ as a function of time.
2) The solution of the differential equation is of the form $u_{C}=E \cos \left(\frac{2 \pi}{T_{0}} t\right)$.
a) Determine, in terms of L and C , the expression of the proper period T_{0} of the free electric oscillations that take place in the circuit.
b) Calculate the value of T_{0}.
3) Express, as a function of time, the electric energy $W_{\text {ele }}$ stored in the capacitor.
4) The electric energy $W_{\text {ele }}$ is a periodic function of period T^{\prime}. Write the relation between T^{\prime} and T_{0}.
5) Calculate the electric energy stored in the capacitor at the instant $\mathrm{t}_{0}=0$.
6) Trace the shape of the graph of $\mathrm{W}_{\text {ele }}$ as a function of time.
II - The rheostat is regulated at a small resistance R.
The variation of the electric energy $\mathrm{W}_{\text {ele }}$ as a function of time is represented in figure (2).
Referring to this figure:
7) give the name of the type of the electric oscillations;
8) determine the value of the pseudoperiod T of the electric oscillations;
9) justify that at the instants:
$0 ; 31.5 \mathrm{~ms} ; 63 \mathrm{~ms} ; \mathrm{t}_{2}=94.5 \mathrm{~ms}$; 126 ms , the total energy stored in the circuit is electric;

Fig. 2
4) specify the form of the energy in the circuit at the instant t_{1};
5) specify, between the instants $t_{0}=0$ and $t=31.5 \mathrm{~ms}$, the time interval during which the:

- coil provides energy to the circuit;
- capacitor provides energy to the circuit;

6) calculate the energy dissipated in the rheostat between the instants $\mathrm{t}_{0}=0$ and t_{2}.

III - What will happen if the resistance of the rheostat is very large?

Fourth exercise: (7.5 points)

Spectrum of the hydrogen atom

Rydberg found in 1885 an empirical formula that gives the wavelengths of the lines of Balmer series; other series are discovered after that date.
An atom in an excited state n, passes to a lower energy state m, emits electromagnetic rays of wavelength λ, such that:

$$
\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{\mathrm{~m}^{2}}-\frac{1}{\mathrm{n}^{2}}\right), \lambda \text { in meter and } \mathrm{R}=1.097 \times 10^{7} \mathrm{~m}^{-1} .
$$

Given: Speed of light in vacuum $\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$;
Planck's constant $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$; $1 \mathrm{ev}=1.60 \times 10^{-19} \mathrm{~J}$.

1) Show that the energy E_{n} of the hydrogen atom, corresponding to an energy level n, can be expressed as $\mathrm{E}_{\mathrm{n}}=-\frac{\mathrm{hcR}}{\mathrm{n}^{2}}$.
2) Deduce that the energy E_{n}, expressed in $e V$, may be written in the form $E_{n}=-\frac{13.6}{n^{2}}$.
3) Calculate the value of the:
a) maximum energy of the hydrogen atom;
b) minimum energy of the hydrogen atom ;
c) energy of the hydrogen atom in the first excited state E_{2};
d) energy of the atom in the second excited state E_{3}.
4) Deduce that the energy of the atom is quantized.
5) Give three characteristics of a photon.
6) a) Define the ionization energy W_{i} of the hydrogen atom, found in the ground state.
b) Calculate the value of W_{i}.
c) Calculate the value of the wavelength of the radiation capable of producing this ionization.
7) The Lyman series corresponds to the lines emitted by the excited hydrogen atom in a downward transition to the fundamental state.
a) Determine the shortest and the longest wavelengths of this series.
b) To what domain (visible, infrared, ultraviolet) does it belong?
8) a) Calculate the frequencies $v_{3 \rightarrow 1}, v_{2 \rightarrow 1}$, and $v_{3 \rightarrow 2}$ of the emitted photons corresponding respectively to the transitions $E_{3} \rightarrow E_{1}, E_{2} \rightarrow E_{1}$ and $E_{3} \rightarrow E_{2}$ of the hydrogen atom.
b) Verify Ritz relation: $v_{3 \rightarrow 1}=v_{3 \rightarrow 2}+v_{2 \rightarrow 1}$.

First exercise : Oscillation and rotation of a mechanical system		8
Question	Answer	
A-1	$2 \mathrm{ma}=\mathrm{m} \frac{\mathrm{L}}{2}-\mathrm{m} \frac{\mathrm{L}}{4}=\mathrm{m} \frac{\mathrm{L}}{4} \Rightarrow \mathrm{a}=\frac{\mathrm{L}}{8}$.	1/2
A-2	$\mathrm{I}_{0}=\mathrm{m}\left(\frac{\mathrm{L}}{2}\right)^{2}+\mathrm{m}\left(\frac{\mathrm{L}}{4}\right)^{2}=\frac{5 \mathrm{~mL}^{2}}{16}$.	1/2
A-3	$\mathrm{ME}=\mathrm{KE}+\mathrm{PE}_{\mathrm{g}}=1 / 2 \mathrm{I} \mathrm{I}_{0} \theta^{\prime 2}-2 \mathrm{mgacos} \theta$	$3 / 4$
A-4	$\frac{\mathrm{dME}}{\mathrm{dt}}=0=\mathrm{I}_{0} \theta^{\prime} \theta^{\prime \prime}+2 \mathrm{mga} \theta \cdot \sin \theta \Rightarrow \mathrm{I}_{0} \theta^{\prime \prime}+2 \mathrm{mga} \theta=0 \Rightarrow \quad \theta^{\prime \prime}+\frac{2 \mathrm{mga}}{\mathrm{I}_{0}} \theta=0 .$	3/4
A-5	The proper pulsation of the pendulum $\omega=\sqrt{\frac{2 \mathrm{mga}}{\mathrm{I}_{0}}} \Rightarrow$ The period is $\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{I}_{0}}{2 \mathrm{mga}}}=2 \pi \sqrt{\frac{5 m L^{2} \times 8}{16 \times 2 m g \times L}}=2 \pi \sqrt{\frac{5 L}{4 g}}=$ $2 \pi \sqrt{\frac{5 \times 2}{4 \times 9.8}}=3.17 \mathrm{~s}$.	1
A-6	g (Moon) < g (Earth) $\Rightarrow \mathrm{T}$ (Moon) > T(Earth) .	1/2
B-1	The weight, the reaction of the axis and the couple of forces of friction.	1/4
B - 2	The weight and the reaction of the axis meet the axis, their moment is zero, the resultant moment is: $\Sigma M=\mathrm{M}_{\text {couple }}=-\mathrm{h} \theta^{\prime}$. $\Rightarrow \Sigma M=\mathrm{M}=-h \theta^{\prime}$	1/2
B - 3	$\mathrm{I}=2 \mathrm{~m}\left(\frac{\mathrm{~L}}{2}\right)^{2}=\mathrm{m} \frac{\mathrm{L}^{2}}{2}=\frac{0.1 \times 4}{2}=0.2 \mathrm{kgm}^{2}$.	1/2
B - 4	$\begin{aligned} & \frac{\mathrm{d} \sigma}{\mathrm{dt}}=\Sigma \mathrm{M}_{\mathrm{ext}}=\mathrm{M}=-h \theta^{\prime}, \text { and } \sigma=\mathrm{I} \theta^{\prime} \Rightarrow \frac{\mathrm{d} \sigma}{\mathrm{dt}}=-\frac{\mathrm{h}}{\mathrm{I}} \sigma \\ & \Rightarrow \frac{\mathrm{~d} \sigma}{\mathrm{dt}}+\frac{\mathrm{h}}{\mathrm{I}} \sigma=0 . \end{aligned}$	$3 / 4$
B - 5	$\frac{\mathrm{d} \sigma}{\mathrm{dt}}=-\frac{\mathrm{h}}{\mathrm{I}} \sigma_{0} \mathrm{e}^{-\frac{\mathrm{h}}{\mathrm{I}} \mathrm{t}} \Rightarrow-\frac{\mathrm{h}}{\mathrm{I}} \sigma_{0} \mathrm{e}^{-\frac{\mathrm{h}}{\mathrm{I}} \mathrm{t}}+\frac{\mathrm{h}}{\mathrm{I}} \sigma_{0} \mathrm{e}^{-\frac{\mathrm{h}}{\mathrm{I}} \mathrm{t}}=0$.	1/2
B-6-a	Because at $\mathrm{t}=0, \sigma_{0}=\mathrm{I} \times \theta_{0}^{\prime}=0.2 \times 2=0.4 \mathrm{kgm}^{2} / \mathrm{s}$. decreasing curve and as $\mathrm{t} \rightarrow 5 \mathrm{~s}, \sigma \rightarrow 0$.	1/2
B - 6 - b	$\frac{\mathrm{d} \sigma}{\mathrm{dt}}=-\frac{\mathrm{h}}{\mathrm{I}} \sigma_{0} \mathrm{e}^{-\frac{\mathrm{h}}{\mathrm{I}} \mathrm{t}}, \text { at } \mathrm{t}=0, \frac{\mathrm{~d} \sigma}{\mathrm{dt}}=-\frac{\mathrm{h}}{\mathrm{I}} \sigma_{0}=-\frac{0.4}{1} \Rightarrow \mathrm{~h}=\frac{0.4 \times 0.2}{0.4}=0.2 \text { S.I. }$	1

Second exercise : Charging and discharging of a capacitor		$6^{1 / 2}$
Question	Answer	
A-1	$\mathrm{E}=\mathrm{Ri}+\mathrm{u}_{\mathrm{C}}=\mathrm{RC} \frac{d u_{C}}{d t}+\mathrm{u}_{\mathrm{C}}$	1/2
A-2	$\begin{aligned} & \frac{d u_{C}}{d t}=-\frac{B}{\tau} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} \Rightarrow \mathrm{E}=\mathrm{RC}\left(-\frac{B}{\tau} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}\right)+\mathrm{A}+\mathrm{B} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} \Rightarrow \mathrm{~A}=\mathrm{E} \text { and } \mathrm{RC}\left(-\frac{B}{\tau}\right)+\mathrm{B}=0 \\ & \Rightarrow \tau=R C . \text { for } \mathrm{t}=0, \mathrm{u}_{\mathrm{C}}=0=\mathrm{A}+\mathrm{B} \Rightarrow \mathrm{~B}=-\mathrm{A}=-\mathrm{E} \end{aligned}$	$11 / 2$
A-3-a	$u_{C}=E\left(1-e^{-\frac{t}{\mathrm{RC}}}\right) \text {, for } \mathrm{t} \rightarrow \infty, \mathrm{u}_{\mathrm{C}} \rightarrow \mathrm{E}=10 \mathrm{~V}$	1/2
A-3-b	$\mathrm{W}=1 / 2 \mathrm{CE}^{2}=1 / 2(1)(100)=50 \mathrm{~J}$.	1/2
B-1-a	$\mathrm{t}_{1}=22 \mathrm{~s}$.	$1 / 4$
B-1-b	$\mathrm{u}_{1}=5 \mathrm{~V}$.	$1 / 4$
B-2-a	because $\mathrm{u}_{\mathrm{C}}=\mathrm{u}_{1}=5 \mathrm{~V} \neq 0$.	$3 / 4$
B-2-b	$\mathrm{W}_{1}=1 / 2 \mathrm{C}\left(\mathrm{u}_{\mathrm{C}}\right)^{2}=1 / 2(1)(5)^{2}=12.5 \mathrm{~J}$.	1/2
B-3-a	$\mathrm{W}_{2}=\mathrm{W}-\mathrm{W}_{1}=50-12.5=37.5 \mathrm{~J}$.	1/2
B-3-b	Thermal and mechanical (kinetic)	$1 / 4$
B-3-c	$\mathrm{r}=\frac{\mathrm{mgh}}{\mathrm{~W}_{2}}=\frac{1 \times 10 \times 1.5}{37.5}=40 \% .$	1

Third exercise : Electromagnetic Oscillations		$\mathbf{8}$
Question	Answer	
A-1	Charging of the capacitor	$1 / 4$

$\mathrm{A}-2-\mathrm{a}-\mathrm{b}-$ c	$\begin{aligned} & \mathrm{i}=0 ; \\ & \mathrm{u}_{\mathrm{C}}=\mathrm{E}=10 \mathrm{~V} ; \\ & \mathrm{W}_{\text {ele }}=1 / 2 \mathrm{CE}^{2}=1 / 2\left(10^{-3}\right)(100)=0.05 \mathrm{~J} . \\ & \hline \end{aligned}$	$3 / 4$
B-I-1	$\mathrm{u}_{\mathrm{C}}=\mathrm{u}_{\mathrm{AM}}=\mathrm{L} \frac{d i}{d t}, \mathrm{i}=-\mathrm{C}\left(\mathrm{u}_{\mathrm{C}}\right)^{\prime} \Rightarrow \frac{d i}{d t}=-C\left(u_{C}\right)^{\prime \prime} \Rightarrow\left(\mathrm{u}_{\mathrm{C}}\right)^{\prime \prime}+\frac{1}{L C} \mathrm{u}_{\mathrm{C}}=0$	1
B-I-2-a	$\left(\mathrm{u}_{\mathrm{C}}\right)^{\prime}=-\frac{2 \pi}{T_{0}} E \sin \frac{2 \pi}{T_{0}} t,\left(\mathrm{u}_{\mathrm{C}}\right)^{\prime \prime}=-\left(\frac{2 \pi}{T_{0}}\right)^{2} E \cos \frac{2 \pi}{T_{0}} t$, replace in the differential equation we get : $-\left(\frac{2 \pi}{T_{0}}\right)^{2} E \cos \frac{2 \pi}{T_{0}} t+\frac{1}{L C} E \cos \frac{2 \pi}{\mathrm{~T}_{0}}=0 \Rightarrow\left(\frac{2 \pi}{T_{0}}\right)^{2}=\frac{1}{L C} \Rightarrow T_{0}=2 \pi \sqrt{L C}$	1
B-I-2-b	$\mathrm{T}_{0}=2 \pi \sqrt{10^{-4}}=0.0628 \mathrm{~s}=62.8 \mathrm{~ms}$.	$1 / 4$
B-I-3	$\mathrm{W}_{\text {ele }}=1 / 2 \mathrm{C}\left(\mathrm{u}_{\mathrm{c}}\right)^{2}=1 / 2 \mathrm{CE}^{2} \cos ^{2}\left(\mathrm{~T}_{0} \frac{2 \pi}{T_{0}} t\right)=0.05 \cos ^{2}(100 \mathrm{t}) .$	$1 / 2$
B-I-4	$\mathrm{T}^{\prime}=\mathrm{T}_{0} / 2$.	$1 / 4$
B-I-5	At $\mathrm{t}_{0}=0, \mathrm{~W}_{\text {ele }}=0.05 \mathrm{~J}$.	$1 / 4$
B-I-6		1/2
B-II-1	free-damped electric oscillations.	$1 / 4$
B -II-2	$2 \mathrm{~T}=126 \mathrm{~ms} ; \mathrm{T}=63 \mathrm{~ms}$.	$1 / 2$
B -II-3	At the instants $: 0 ; 31.5 \mathrm{~ms} ; 63 \mathrm{~ms} ; 94.5 \mathrm{~ms} ; 126 \mathrm{~ms}$; the electric energy is maximum $\Rightarrow u_{C}$ is max. $\Rightarrow \mathrm{i}=\mathrm{C}\left(\mathrm{u}_{\mathrm{C}}\right)^{\prime}=0 \Rightarrow$ magnetic energy $\mathrm{E}_{\text {mag }}=1 / 2 \mathrm{~L}(\mathrm{i})^{2}$ is zero \Rightarrow $\mathrm{E}_{\text {total }}$ is electric.	3/4
B - II -4	Magnetic energy	$1 / 4$
B -II -5	$0<\mathrm{t}<\mathrm{t}_{1}: \mathrm{W}_{\text {ele }}$ decreases \Rightarrow the capacitor gives energy to the circuit. $\mathrm{t}_{1}<\mathrm{t}<31.5 \mathrm{~ms}$: $\mathrm{W}_{\text {ele }}$ increases \Rightarrow the coil gives energy to the circuit.	$1 / 2$
B -II -6	$\mathrm{W}($ dissipated $)=50-7.5=42.5 \mathrm{~mJ}$.	1/2
B - III	The electric energy is lost quickly in the resistor and the mode is not oscillatory	$1 / 2$
	Fourth exercise : Spectrum of the hydrogen atom	$71 / 2$
Question	Answer	
1	$\mathrm{E}_{\mathrm{n}}-\mathrm{E}_{\mathrm{m}}=\frac{h c}{\lambda}=h c \times \mathrm{R}\left(\frac{1}{m^{2}}-\frac{1}{\mathrm{n}^{2}}\right) \Rightarrow \mathrm{E}_{\mathrm{n}}=-\frac{\mathrm{hcR}}{\mathrm{n}^{2}}$	$3 / 4$
2	$\begin{aligned} & \mathrm{hcR}=6.626 \times 10^{-34} \times 2.998 \times 10^{8} \times 1.097 \times 10^{7}(\text { in } \mathrm{J})=21.79 \times 10^{-19} \mathrm{~J}=13.6 \mathrm{eV} \Rightarrow \\ & \mathrm{E}_{\mathrm{n}}=-\frac{13.6}{\mathrm{n}^{2}} \mathrm{eV} . \end{aligned}$	3/4

3-a	as $\mathrm{n} \rightarrow \infty, \mathrm{E}_{\text {max }} \rightarrow 0$.	1/4
3-b	as $\mathrm{n} \rightarrow 1 ; \mathrm{E}_{\text {min }}=-13.6 \mathrm{ev}$	1/4
3-c	$\mathrm{E}_{2}=-\frac{13.6}{2^{2}}=-3.4 \mathrm{eV}$	1/4
3-d	E_{3} for $\mathrm{n}=3 \Rightarrow \mathrm{E}_{3}=-1.51 \mathrm{eV}$.	1/4
4	Only certain values of $\mathrm{E}_{\mathrm{n}}(-13.6 ;-3.4 ;-1.51 ;-0.85 \ldots \ldots)$ are allowed	1/4
5	The photon: no mass, no charge, speed in vacuum is c, of energy $\mathrm{h} v$.	3/4
6-a	The ionization energy is the energy needed for the atom to absorb for it to release its electron without speed.	1/2
6-b	$\mathrm{W}_{\mathrm{i}}+(-13.6)=0 ; \mathrm{W}_{\mathrm{i}}=13.6 \mathrm{eV}$.	1/2
6-c	$\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{\mathrm{~m}^{2}}-\frac{1}{\mathrm{n}^{2}}\right)$ for $\mathrm{n} \rightarrow \infty$ and $\mathrm{m}=1, \frac{1}{\lambda}=\mathrm{R}=1.097 \times 10^{7} \Rightarrow \lambda=0.911 \times 10^{-7} \mathrm{~m}$.	1/2
7-a	$\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{\mathrm{~m}^{2}}-\frac{1}{\mathrm{n}^{2}}\right)$; for $\mathrm{m}=1$ and $\mathrm{n}=2$, we obtain $\lambda_{\max }=0.121 \times 10^{-6} \mathrm{~m}$ for $\mathrm{m}=1$ and $\mathrm{n} \rightarrow \infty$, we obtain $\lambda_{\text {min }}=0.091 \times 10^{-6} \mathrm{~m}$.	1/2
7-b	ultra-violet.	1/4
8-a	$\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{\mathrm{~m}^{2}}-\frac{1}{\mathrm{n}^{2}}\right)$. for $\mathrm{m}=1$ and $\mathrm{n}=3, \frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{1^{2}}-\frac{1}{3^{2}}\right)=\frac{8}{9} \mathrm{R}=0.975 \times 10^{7} \quad v=\frac{c}{\lambda} \Rightarrow$ $v_{3 \rightarrow 1}=2.92 \times 10^{15} \mathrm{~Hz}$. for $\mathrm{m}=1$ and $\mathrm{n}=2$ on a $\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=\frac{3}{4} \mathrm{R}=0.82275 \times 10^{7} \Rightarrow \mathrm{v}_{2 \rightarrow 1}=2.47 \times 10^{15} \mathrm{~Hz}$. for $\mathrm{m}=2$ and $\mathrm{n}=3$ on a $\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=\frac{5}{36} \mathrm{R}=0.15236 \times 10^{7} \Rightarrow$ $v_{3 \rightarrow 2}=0.46 \times 10^{15} \mathrm{~Hz}$.	$11 / 4$
8-b	$v_{3 \rightarrow 1}=v_{3 \rightarrow 2}+v_{2 \rightarrow 1}$ is verified	1/2

