مسابقة في مادة الفيزياء المدة: ثلاث ساعات الرقم:

This exam is formed of four exercises in four pages numbered from 1 to 4

The use of a non-programmable calculator is recommended

First exercise (7 ½ pts)

Solid in rotation

Consider a rigid rod AB, of negligible mass and of length AB = L = 80 cm. The rod may rotate around a horizontal axis (Δ), perpendicular to it through its midpoint O. Two identical particles, each of mass m = 10g, may slide along this rod. Take g = 10 m/s²; $0.32\pi = 1$.

I- Work done by the couple of friction

We fix one of the two particles at the end A of the rod while the other particle is fixed at another point D , at a distance $\frac{L}{4}$ from O .

G being the centre of gravity of the system (S) formed of the rod and the two particles, we suppose OG = a.

Take as a gravitational potential energy reference, the horizontal plane through G when (S) is in the position of stable equilibrium (Fig.1).

1) Show that $a = \frac{L}{8}$.

Fig.1

В

D

- 2) (S) is in its stable equilibrium position .At the instant $t_0 = 0$, we communicate to (S) an initial kinetic energy $E_0 = 1.95 \times 10^{-4} \, \text{J}$; (S) oscillates then around (Δ), on both sides of its position of stable equilibrium. At an instant t, OG makes an angle θ with the vertical through O.
 - a) Neglecting friction, show that:
 - *i.* the expression of the gravitational potential energy of the system [(S),Earth] is P.Eg = $2mga(1-cos\theta)$;
 - ii. the value of the mechanical energy of the system [(S), Earth] is E_0 ;
 - iii. the value of the angular amplitude of the motion of (S) is $\theta_m = 8^\circ$.
 - **b**) In reality, the forces of friction form a couple whose moment about the axis (Δ) is \mathcal{M} . We suppose that \mathcal{M} is constant .The measurement of the first maximum elongation of (S) is then $\theta_{lm} = 7^{\circ}$ at the instant t_l .
 - *i.* Determine the expression giving the variation of the mechanical energy of the system [(S), Earth] between t_0 and t_1 in terms of m, g, a, θ_{1m} and E_0 .
 - \ddot{u} . Deduce the value W of the work done by M between t_0 and t_1 .

II- Moment of the couple of friction

We fix each particle on an extremity of the rod (figure 2). At the instant $t_0 = 0$, and we give (S), a rotational speed $N_0 = 1$ turn/s and we suppose that \mathcal{M} keeps the same preceding value.

- 1) Show that the moment of inertia of (S) with respect to (Δ) is I = 32 × 10⁴ kg.m².
- 2) Show that the value of the angular momentum of (S) with respect to (Δ), at t_0 , is $\sigma_0 = 2 \times 10^{-2} \text{ kg.m}^2/\text{s}$.
- 3) a) Give the names of the external forces acting on (S).
 - **b)** Show that the value of the resultant moment of these forces, with respect to (Δ) , is equal to \mathcal{M} .
 - c) Find, applying the theorem of angular momentum, the expression of the angular momentum σ of (S) with respect to (Δ), in terms of M, t and σ_0 .
- 4) Launched with the rotational speed $N_0 = 1$ turn/s, (S) stops at the instant t' = 52.8 s. Determine then the value of \mathcal{M} .

Fig.2

G

III- Relation between W and M

Referring to the parts **I** and **II**, verify that the work W is $W = \mathcal{M} \times \theta_{1m}$.

Second exercise (6 ½ pts) Energy dissipated during the charging of a capacitor

The object of this exercise is to determine the energy dissipated, by Joule's effect, during the charging of a capacitor.

We charge a capacitor of capacitance $C = 5 \times 10^{-3}$ F, initially neutral, using an ideal generator of constant voltage of e.m.f E through a resistor of resistance $R = 200 \Omega$ (fig.1).

At the instant $t_0 = 0$, the switch K is closed. The circuit thus carries a current i at the instant t. E

I-Exploiting a waveform

Using an oscilloscope, we display the variations of the voltage $u_R = u_{PA}$ across the resistor and that of $u_C = u_{AB}$ across the capacitor.

We obtain the waveforms of figure 2.

- 1) The curve (b) represents the variation of u_R as a function of time. Why?
- 2) Determine, using the waveforms:
 - a) the value of E;
 - **b**) the maximum value I of i;
 - *c*) the time constant τ of the RC circuit.
- 3) Give the time at the end of which the capacitor will be practically completely charged.

II- Theoretical study of charging

- 1) Show that the differential equation in u_C may be written as: $E = RC \frac{du_C}{dt} + u_C$
- 2) The solution of this equation has the form $u_C = A e^{\frac{\tau}{\tau}} + B$ where A, B and τ are constants.
 - a) Determine, starting from the differential equation, the expression of B in terms of E and that of τ in terms of R and C.
 - b) Using the initial condition, determine the expression of A in terms E.
- 3) Show that: $i = \frac{E}{R} e^{\frac{-t}{\tau}}$.

III- Energetic study of charging

- 1) Calculate the value of the electric energy W_C stored in the capacitor at the end of the charging process.
- 2) The instantaneous electric power delivered by the generator at the instant t is $p = \frac{dW}{dt} = Ei$ where W

is the electric energy delivered by the generator between the instants $t_0\,$ and $\,t.\,$

- a) Show that the value of the electric energy delivered by the generator during the whole duration of charging is 0.32 J.
- b) Deduce the energy dissipated due to Joule's effect in the resistor.

Third exercise (6 ½ pts) Ionization energy

Given: $1 \text{ eV} = 1.6 \times 10^{-19} \text{J}$; Planck's constant $h = 6.62 \times 10^{-34} \text{ J.s}$; speed of light in vacuum $c = 3 \times 10^8 \text{ m/s}$. The object of this exercise is to compare the ionization energy of the hydrogen atom with that of the helium ion He^+ and that of the lithium ion Li^{2+} each having only one electron in the outermost shell.

The quantized energy levels of each is given by the expression $E_n = -\frac{E_0}{n^2}$ where E_0 is the ionization energy and n is a non-zero positive whole number.

I-Interpretation of the existence of spectral lines

- 1) Due to what is the presence of emission spectral lines of an atom or an ion?
- 2) Explain briefly the term "quantized energy levels".
- 3) Is a transition from an energy level m to another energy level p (p < m) a result of an absorption or an emission of a photon? Why?

II- Atomic spectrum of hydrogen

For the hydrogen atom $E_0 = 13.6 \text{ eV}$.

- 1) A hydrogen atom, found in its ground state, interacts with a photon of energy 14 eV.
 - *a*) Why?
 - b) A particle is thus liberated. Give the name of this particle and calculate its kinetic energy.
- 2) a) Show that the expression of the wavelengths λ of the radiations emitted by the hydrogen atom is:

$$\frac{1}{\lambda} = R_1(\frac{1}{p^2} - \frac{1}{m^2})$$
 where m and p are two positive whole numbers so that m > p and R₁ is a

positive constant to be determined in terms of $\,E_{o},\,h$ and c. .

b) Verify that $R_1 = 1.096 \times 10^7 \text{ m}^{-1}$.

III- Atomic spectrum of the helium ion He⁺

The spectrum of the ion He⁺ is formed, in addition to others, of two lines whose corresponding reciprocal wavelengths $\frac{1}{\lambda}$ are: 3.292×10^7 m⁻¹; 3.901×10^7 m⁻¹ respectively. These lines correspond, respectively, to the transitions: (m = 2 \rightarrow p = 1) and (m = 3 \rightarrow p = 1).

- 1)a) Show that the values of $\frac{1}{\lambda}$ satisfy the relation $\frac{1}{\lambda} = R_2(\frac{1}{p^2} \frac{1}{m^2})$ where R_2 is a positive constant.
 - **b**) Deduce that $R_2 = 4.389 \times 10^7 \text{ m}^{-1}$.
- 2) Find a relation between R_2 and R_1 .

IV-Atomic spectrum of the lithium ion Li²⁺

Also, the ion Li^{2+} may emit radiations whose wavelengths λ are given by : $\frac{1}{\lambda} = R_3(\frac{1}{p^2} - \frac{1}{m^2})$

where m and p are two positive whole numbers so that m > p and $R_3 = 9.860 \times 10^7 \,\text{m}^{-1}$.

Find a relation between R_3 and R_1 .

V-Charge number and ionization energy

The charge numbers Z of the elements hydrogen, helium and lithium are respectively 1, 2 and 3.

Compare the ionization energy of the hydrogen atom with that of He⁺ion and that of Li²⁺ ion. Conclude.

Fourth exercise (7 pts) An analogy

The object of this exercise is to show evidence of the analogy between a mechanical oscillator and an electric oscillator in the case of free oscillations.

A- Mechanical oscillator

A horizontal mechanical oscillator is formed of a solid (S) of mass m=0.546~kg and a spring of un-jointed turns of stiffness k=5.70~N/m and of negligible mass .

The center of mass G of (S) is initially at the equilibrium position O on the axis x'x.

(S), shifted from O by a certain distance, is then released without initial velocity at the instant $t_0 = 0$.

G thus performs a rectilinear motion along the axis x'x (fig.1). At the instant t, its abscissa is \vec{x} ($\overrightarrow{OG} = \vec{x}$ i)

and its velocity is
$$\vec{V}$$
 ($\vec{V} = V\vec{i} = \frac{dx}{dt}\vec{i}$).

The horizontal plane through the axis x'x is taken as a gravitational potential energy reference.

I – General study

1) Write down the expression of the mechanical energy M.E of the system [oscillator, Earth] in terms of m, k, x and V.

3

2) Determine the expression giving $\frac{d(M.E)}{dt}$, the derivative of M.E with respect to time.

II- Free non-damped oscillations

We neglect all friction.

- 1) Derive the second order differential equation that governs the variations of x as a function of time.
- 2) Deduce the expression of the proper frequency f_0 of the oscillator and show that its value is 0.51 Hz.

III- Free damped oscillations

In reality, the force \vec{F} of friction is not negligible and its expression is given by: \vec{F} = - λ \vec{V} at an instant t, λ being a positive constant.

1) Derive the second order differential equation describing the variations of x as a function of time knowing that $\frac{d(M.E)}{f} = \vec{F} \cdot \vec{V}$

- b) Determine the pseudo-frequency f of the mechanical oscillations
- c) Calculate the value of λ , knowing that f is given by the expression:

$$f^2 = (f_0)^2 - \frac{1}{4\pi^2} (\frac{\lambda}{2m})^2$$
.

B-Electric oscillator

This oscillator is a series circuit formed of a coil of inductance L= 43 mH and of resistance r =11 Ω , a resistor of adjustable resistance R, a switch K and a capacitor of capacitance $C = 4.7 \mu F$ initially charged with a charge Q (Fig.3).

We close the switch K at the instant $t_0 = 0$. The circuit is thus the seat of electric oscillations. At the instant t, the armature A carries a charge q and the circuit carries a current i (Fig.4).

- 1) Write down the expression of the electromagnetic energy E of the circuit at the instant t (total energy of the circuit) as a function of L, i, q and C.
- 2) Knowing that $\frac{dE}{dt} = -(R+r)i^2$, derive the second order differential equation of the variations of q as a function of time.
- 3) Give the expression of the proper frequency f_0' of the electric oscillations and show that its value is 354.2 Hz.
- 4) The figure 5 gives the variations of q as a function of time.
 - a) Due to what is the decrease with time in the amplitude of oscillations?
 - b) Determine the pseudo-frequency f' of the electric oscillations.

(L,r)

Fig. 4

C-An analogy

- 1) Match each of the physical mechanical quantities x, V, m, λ and k with its corresponding convenient electric quantity.
- 2) a) Deduce the relation between f', f'_0 , L and (R + r).
 - **b)** Calculate the value of R.

Solution

First exercise (7 ½ pts)

I- 1)
$$a = OG = \frac{m^{\frac{L}{2} - m^{\frac{L}{4}}}}{2m} = \frac{L}{s}$$
. (1/2 pt)

2) a- i)
$$PE_g = M_t gh_G = 2mg (a -acos\theta) = 2mga(1-cos\theta)$$
. (1/2pt)

ii) The mechanical energy is conserved because friction is neglected
$$\Rightarrow$$
 ME_i = ME_f \Rightarrow ME = KE₀ + PE_{g0} = KE₀ + 0 (For θ = 0).(1/2pt)

iii)
$$ME_i = ME_f \implies 1.95 \times 10^{-4} = 2 \text{mg.a} (1 - \cos \theta_m) \implies \theta_m = 8^0$$
 (1/2pt)

b-i)
$$\Delta ME = 2mga(1 - \cos \theta_{1m}) - KE_0$$
 (1/2pt)

ii) W =
$$\Delta$$
ME = 2 × 0.01 ×10 × 0.1(1- 0.99255) – 1.95 ×10⁻⁴
=1.49 ×10⁻⁴- 1.95 ×10⁻⁴ = -4.6 ×10⁻⁵ J. (1/2 pt)

II- 1)
$$I = 2m \frac{L^2}{4} = 32 \times 10^4 \text{ kg.m}^2$$
. (1/2 pt)

2)
$$\sigma_0 = I \theta_0' = I \times 2\pi N_0 = 2 \times 10^{-2} \text{ kg.m}^2 / \text{s.}$$
 (3/4pt)

- 3) a) The forces applied on (S) are: weight 2 mg the reaction \overline{R} of axis (Δ) and the couple of friction. (1/2pt)
 - **b)** $\Sigma \mathcal{M} / \Delta = \mathcal{M} (\vec{R}) / \Delta + M(2 m_g^2) / \Delta + \mathcal{M} \text{ (couple) } / \Delta;$ or $\mathcal{M} (\vec{R}) = \mathcal{M} \text{ (weight)} = 0 \text{ (because the 2 forces passes through the axis) ;}$ $\Rightarrow \Sigma \mathcal{M} = \mathcal{M} (1/2pt)$

c)
$$\frac{d\sigma}{dt} = \sum \mathcal{M} = \mathcal{M} \implies \sigma = \mathcal{M} t + \sigma_0$$
. (1 pt)

4)
$$\theta' = 0 \Rightarrow \sigma = 0 = M t' + \sigma_0 \Rightarrow M = -\frac{\sigma_0}{t'} = -3.78 \times 10^{-4} \text{ m.N. (3/4 pt)}$$

III-
$$\mathcal{M} \theta = -3.78 \times 10^{-4} \times \frac{7 \times \pi}{180} = -4.6 \times 10^{-5} \text{ J} \text{ and W} = -4.6 \times 10^{-5} \text{ J}$$

 $\Rightarrow W = \mathcal{M} \theta \quad (\theta \text{ in rad}).$ (1/2pt)

Second exercise (6 ½ pts)

- I- 1) The current i decreases with time, [at the end of charging i = 0] \Rightarrow the voltage $u_R = Ri$ is represented by the curve (b). (1/2 pt)
 - 2) a) Explantion : at the end of charging $u_C = E$; E = 8 V. (1/2 pt)

b) RI = 8
$$\Rightarrow$$
 I = $\frac{8}{200}$ = 0.04 A. (1/2 pt)

c) Method (1/2 pt)
$$\tau = 1s$$
. (1/4 pt)

3) $5 \tau = 5 s$ (1/4 pt)

II- 1)
$$u_R = Ri = R \frac{dq}{dt} = RC \frac{du C}{dt}$$
; thus $E = u_R + u_C = RC \frac{du C}{dt} + u_C$ (1/2 pt)

2) a)
$$u_C = A_e^{-\frac{t}{\tau}} + B \implies (-\frac{RCA}{\tau})_e^{-\frac{t}{\tau}} + A_e^{-\frac{t}{\tau}} + B = E \implies B = E \text{ and } \tau = RC \text{ (1 pt)}$$

b) For
$$t = 0$$
 $u_C = 0 = A + B \Rightarrow A = -B = -E$. (1/2 pt)

3)
$$u_C = E(1 - e^{-\frac{t}{\tau}})$$
 thus $i = c \frac{du_C}{dt} = C \frac{E}{RC} e^{-\frac{t}{\tau}} = \frac{E}{R} e^{-\frac{t}{\tau}}$. (1/2 pt)

III- 1)
$$W_C = \frac{1}{2}C E^2 = 0.16 J (1/2 pt)$$

2) a)
$$\frac{dW}{dt} = Ei \Rightarrow W = \text{primitive of } Ei = \text{primitive of } E \xrightarrow{E} e^{-\frac{t}{\tau}} \Rightarrow$$

$$W = -CE^{2} e^{\frac{-t}{\tau}} + cte.$$

For t = 0, the electric energy delivered by the generator is zero \Rightarrow

 $cte = CE^2 \Rightarrow$ the expression of the dissipated energy as a function of time is :

$$W = CE^2(1 - e^{\frac{-t}{\tau}}).$$

For
$$t = 5RC$$
 (as $t \to \infty$), $1 - e^{\frac{-t}{\tau}} \to 1$ and $W = CE^2 = 0.32 \text{ J}$ (3/4 pt)

b)
$$W_R = W_e - W_C = CE^2 - \frac{1}{2} CE^2 = \frac{1}{2} CE^2 = 0.16 J$$
 (1/4 pt)

Third exercise (6 ½ pts)

Ι-

- 1) The presence of the lines in this emission spectrum is due to photon, the wavelength is a well determined value that the atom emits it when it undergoes a down ward transition from a higher energy level to a lower energy level. (1/2 pt)
- 2) The atom absorbed a well determined value. (1/2 pt)
- 3) $E_P < E_m \Rightarrow$ the atom loses energy by emitting one photon. (1/2 pt)

II - 1) a) The energy of the photon (14 eV) greater than the ionization energy (13.6 eV) (1/4pt)

b) Electron;
$$KE = 14 - 13.6 = 0.4 \text{ eV}$$
.

2) a) When an atom of the hydrogenoied pass from a level m to a lower level p, it emits a photon of energy $h\nu=\frac{hc}{\lambda}=E_m-E_p=-\frac{E_0}{m^2}+\frac{E_0}{p^2}$ \Longrightarrow

(1/2 pt)

$$\frac{1}{\lambda} = \frac{E_0}{hc} \left(\frac{1}{p^2} - \frac{1}{m^2} \right) \text{ it has the form of } \frac{1}{\lambda} = R_1 \left(\frac{1}{p^2} - \frac{1}{m^2} \right) \text{ with } R_1 = \frac{E_0}{hc} \text{ (1 1/4 pt)}$$

b)
$$R_1 = \frac{E_0}{hc} = \frac{13.6 \times 1.6 \times 10^{-19}}{6.62 \times 10^{-34} \times 3 \times 10^8} = 1.096 \times 10^7 \,\mathrm{m}^{-1}$$
. (1/2 pt)

III - 1) a) We get:
$$R_2 = \frac{1}{\lambda(\frac{1}{p^2} - \frac{1}{m^2})}$$

For
$$p = 1$$
 and $m = 2$ gives $\frac{3.292 \times 10^7}{(\frac{1}{12} - \frac{1}{2^2})} = 4.389 \times 10^7 \text{ m}^{-1}$

For
$$p = 1$$
 and $m = 3$ gives $\frac{3.901 \times 10^7}{(\frac{1}{1^2} - \frac{1}{3^2})} = 4.389 \times 10^7 \text{ m}^{-1}$

The value of $\frac{1}{\lambda(\frac{1}{p^2}-\frac{1}{m^2})}$ is the same for the two transitions. (1pt)

b) The calculation gives $R_2 = 4.389 \times 10^7 \text{ m}^{-1}$. (1/4 pt)

2)
$$\frac{R_2}{R_1}$$
=4 (1/4 pt)

IV -
$$\frac{R_3}{R_1}$$
=9. (1/4 pt)

V - As Z increases, R increases because $R = \frac{E_0}{hc} \Rightarrow$ the ionization energy E_0 increases as Z increases. (3/4pt)

Fourth exercise (7pts)

A- I- 1) ME =
$$\frac{1}{2}$$
 mV² + $\frac{1}{2}$ kx² (1/4 pt)

A- I- 1) ME =
$$\frac{1}{2}$$
 mV² + $\frac{1}{2}$ kx² (1/4 pt)
2) $\frac{dME}{dt}$ = mx'x" + kxx' (1/4 pt)

II-1) in this case
$$\frac{dME}{dt} = 0 \Rightarrow x'' + \frac{k}{m}x = 0$$
 (1/4 pt)

2) The proper angular frequency of oscillations is $\omega_0=\sqrt{\frac{k}{m}}$ \Longrightarrow the proper frequency is

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$
. (1/2 pt)

$$f_0 = 0.51 \text{ Hz.}$$
 (1/4 pt)

$$\begin{aligned} f_0 &= 0.51 \text{ Hz.} \qquad \textbf{(1/4 pt)} \\ \textbf{III- 1)} \ \ \frac{\text{dME}}{\text{dt}} &= \ \vec{\textbf{f}} \cdot \vec{\textbf{v}} \Longrightarrow mx'x'' + kxx' = - \ \lambda \, x' \, x' \Longrightarrow x'' + \frac{\lambda}{m} x' + \frac{k}{m} x = 0. \ \textbf{(1/2 pt)} \end{aligned}$$

2) a) The effect of the force of friction is to decrease the amplitude (1/4 pt)

b) The pseudo-period is
$$T = 2$$
 s \Rightarrow f = 0.5 Hz. (1/2 pt)

c)
$$\lambda = 0.685 \text{ kg/s.}$$
 (1/2 pt)

B- 1)
$$E = \frac{1}{2} Li^2 + \frac{1}{2} \frac{q^2}{C}$$
. (1/4 pt)

2)
$$\frac{dE}{dt} = -(R+r)i^2 = > Lii' + \frac{1}{C}qq'$$
; with $i = -q'$ and $i' = -q''$

$$\Rightarrow Lq'q'' + \frac{1}{C}qq' = -(R+r)(q')^2 \Rightarrow q'' + \frac{(R+r)}{L}q' + \frac{1}{LC}q = 0.$$
 (1/2 pt)

3)
$$\mathbf{f'}_0 = \frac{1}{2\pi\sqrt{LC}}$$
. $\mathbf{f'}_0 = 354.2 \text{ Hz.}$ (1/2 pt)

4) a) the energy lost in the circuit is due to Joule's effect. (1/4 pt)

b)
$$T = 3 \text{ ms} \Rightarrow f' = 333.3 \text{ Hz.}$$
 (1/2 pt)

C –

$$\lambda -----> (R+r)$$
 (1/4 pt)
 $k ----> \frac{1}{C}$ (1/4 pt)

2) a)
$$f'^2 = (f'_0)^2 - \frac{1}{4\pi^2} (\frac{R+r}{2L})^2$$
 (1/4 pt)
b) $R = 54 \Omega$. (1/4 pt)