مسابقة في مادة الفيزياء الاسم: الرقم: المدة: ثلاث ساعات

This exam is formed of 4 exercises in 4 pages numbered from 1 to 4. The use of non-programmable calculators is allowed.

First exercise (7 pts) Moment of inertia of a disk

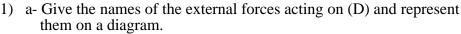
Consider a homogeneous disk (D) of mass m = 400 g and of radius R = 10 cm.

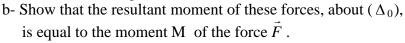
The object of this exercise is to determine, by two methods, the moment of inertia I_0 of (D) about an axis (Δ_0) perpendicular to its plane through its center of mass G.

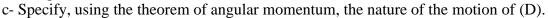
Neglect all friction. **Take:** $0.32\pi = 1$; $g = 10 \text{ m/s}^2$; $\sin \theta = \theta_{\text{(rd)}}$ for small θ .

A- First method

The disk (D) is free to rotate about the horizontal axis (Δ_0), that is perpendicular to its plane through its center G (fig.1). This disk starts from rest, at the instant $t_0 = 0$, under the action of a force \vec{F} of constant moment about (Δ_0) and of magnitude M = 0,2 m.N. At the instant $t_1 = 5$ s, (D) rotates then at the rotational speed $N_1 = 80 \text{ turns/s}$.







2) a- Find the expression of the angular momentum a of the disk, about (Δ_0) , as a function of t.

b- Determine the value of I₀.

B – Deuxième méthode

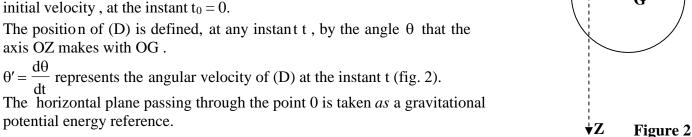
The disk (D) is free to oscillate about a horizontal axis (A), perpendicular to Its plane through a point O of its periphery

We denote by I the moment of inertia of (D) about (A). We shift (D), from its equilibrium position, by a small angle θ_0 and then we release it without initial velocity, at the instant $t_0 = 0$.

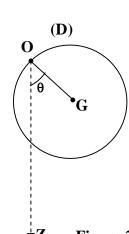
The position of (D) is defined, at any instant t, by the angle θ that the axis OZ makes with OG.

$$\theta' = \frac{d\theta}{dt}$$
 represents the angular velocity of (D) at the instant t (fig. 2).

potential energy reference.



- 1) determine, at the instant t, the mechanical energy of the system [(D),Earth], in terms of I, m, g, R, θ and θ' .
- 2) Derive the second order differential equation that describes the oscillatory motion of (D).
- 3) Deduce the expression of the period T of the oscillations of (D) in terms of I, m, g and R.
- 4) The time taken by the compound pendulum thus formed to perform 10 oscillations is 7.7s. Determine the value of I.
- 5) mowing that I_0 and I are related by the relation $I = I_0 + mR^2$, find again the value of I_0 .



(D)

G

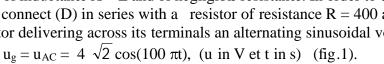
₽Ē

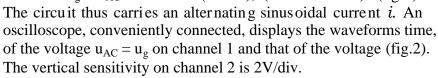
Figure 1

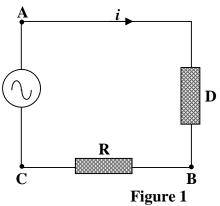
Second exercise (7 pts) Identification of an electric component

We intend to exploit a waveform and identify an electric component (D) of physical characteristic X. (D) may be:

- a resistor of resistance $X = R_1$
- or a capacitor of capacitance X = C
- or a coil of inductance X = L and of negligible resistance. In order to do that, we connect (D) in series with a resistor of resistance R = 400 across a generator delivering across its terminals an alternating sinusoidal voltage:







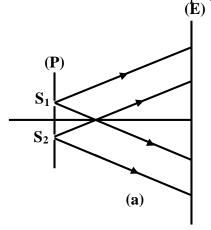
- Redraw the figure 1 showing the connections of the oscilloscope. 1)
- 2) a- Calculate the value of the period T of the voltage u_g.
 - b- Determine the horizontal sensitivity of the oscilloscope.
- 3) a- The waveform of usc represents the "image" of the current i. Why?
 - b- Specify the nature of the component (D). Justify your answer.
- 4) a- Determine the phase difference between u_{AC} and u_{BC} .
 - b- Determine the maximum value I_m of the current i.
 - c- Write the expression of i as a function of time.
- 5) Show that u_{AB} may be written in the form: $u_{AB} = \frac{0.1}{100\pi X} \sin(100\pi t + \frac{\pi}{4})$
- 6) Applying the law of addition of voltages, determine X by giving t a particular value.

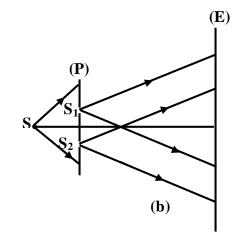
Third exercise $(6 \frac{1}{2} \text{ pts})$ **Interference of light**

A- Conditions to obtain a phenomenon of interferences

We are going to use Young's double slit and two identical lamps.

Consider each of the two set-ups (a) and (b) drawn.





In the set-up (a), each of the slits S_1 et S_2 is illuminated by a lamp; the two lamps emit the same radiation. In the set-up (b), S_1 et S_2 are illuminated by a lamp placed at S next to a very narrow slit parallel to S_1 and S_2 ; the lamp emits the same preceding radiation.

Dans le dispositif (b), S_1 et S_2 sont éclairées par une lampe placée en S et munie d'une fente très fine parallèle à S_1 et S_2 ; la lampe émet la même radiation précédente.

- 1- The radiation emitted by the sources S_1 and S_2 in the two set-ups (a) and (b) have a common property. What is it?
- 2- One property differentiates the radiations issued from S_1 and S_2 in the set-up (a) from those issued from S_1 and S_2 in the set-up (b). Specify this property.
- 3- The set-up (b) allows us to observe the phenomenon of interference. Why?

B- Interference in air

We intend to perform a series of experiments about interference using Young's slits apparatus. The slits are in a plane (P), separated by a distance a, and the pattern of interference is observed on a screen (E) found at a distance D from (P).

I- Interference in air

Consider many light filters, each allowing the transmission of a specific monochromatic radiation. For each radiation of wavelength in air, we measure the distance x = 5i along which five interfringe distances extend. The results obtained are tabulated as in the table below.

$\lambda(en \ nm)$	470	496	520	580	610
x = 5i (en mm)	11,75	12,40	13,00	14,50	15,25
i (en mm)					

- 1) a- Complete the table.
 - b) i- Show that the expression of i as a function of λ is of the form $i = \alpha \lambda$ where α is a positive constant.
 - ii- Calculate α.
 - iii- Deduce the value of the ratio $\frac{D}{a}$.
- 2) We move (E) by 50 cm away from (P). we find that, for the radiation of wavelength $\lambda = 496$ nm In air, five interfringe distances extend over a distance of 18.6 mm. Determine the value of D.
- 3) Deduce the value of a.

II – Interference in water

The radiation used now has a wavelength $\lambda = 520$ nm in air. The preceding apparatus is immersed completely in water whose index of refraction is n. The distance between the planes (E) and (P) is D and the distance between the slits is a.

1- The value of the wavelength λ of a luminous radiation changes when it passes from a transparent medium into another. Why?

- 2-The interference fringes in water seem closer than in air. Why?
- 3- In water, five interfringe distances extend over a distance of 9.75 mm. Determine the value of n.

Quatrième exercice (7 pts) The technetium 99

A - A bit of history...

In 1937, Pierrier and Sêgre obtained, for the first time, an isotope of technetium $^{99}_{43}$ Tc by bombarding the nuclei of molybdenum $^{98}_{42}$ Mo with an isotope of hydrogen $^{A}_{7}$ H according to the following reaction:

$$^{98}_{42}$$
Mo + $^{A}_{Z}$ H \longrightarrow $^{99}_{43}$ Tc + $^{1}_{0}$ n

Determine Z and A specifying the laws used.

B- Production of technetium 99 at the present time and its characteristic

The isotope $^{99}_{43}$ Tc is actually obtained in a generator molybdenum/technetium, starting from the isotope $^{99}_{42}$ Mo of molybdenum. This molubdenum is a β^- emitter.

- 1) Write the equation corresponding to the decay of $^{99}_{42}$ Mo.
- 2) Determine, in MeV, the energy liberated by this decay.
- 3) Most of the technetium nuclei obtained are in an exited state [$^{99}_{43}\mathrm{Tc}^*$]
 - a- i) Complete the equation of the following downward transition: ${}^{99}_{43}\text{Tc}^*$ \longrightarrow ${}^{99}_{43}\text{Tc} + \dots$
 - ii) Specify the nature of the emitted radiation.
 - b- The energy liberated by this transition, of value 0.14 MeV, is totally carried by the emitted radiation; the nuclei $\begin{bmatrix} 99 & \text{Tc} \\ 43 & \text{Tc} \end{bmatrix}$ and $\frac{99}{43}$ Tc are supposed to be at rest.
 - i) Determine, in u, the mass of the $^{99}_{43}\,\mathrm{Tc}^*$ nucleus.
 - ii) Calculate the wavelength of the emitted radiation.

C- Using technetium 99 in medicine

The isotope $^{99}_{43}$ Tc is actually often used in medical imaging. The generator molybdenum/technetium is known, in medicine, by the name "technetium cow". Also, the daily preparation of the medically needed technetium 99, of half-life $T_1 = 6$ hours, starting from its "parent" the molybdenum of half-life $T_2 = 67$ hours, allows a weekly supply.

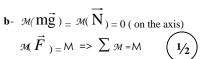
- 1) Why is it preferable, in medical service that requires the use of technetium 99, to keep a reserve of molybdenum 99 and not a reserve of technetium 99?
- 2) Determine the number of technetium 99 nuclei obtained from a mass of 1g of molybdenum 99 at the end of 24 hours. Deduce the mass of these technetium nuclei.

Given : Masses of nuclei and particles: $^{99}_{42}$ Mo = 98,88437 u; $^{99}_{43}$ Tc = 98,88235 u; $^{0}_{-1}e = 55 \times 10^{-5} u$.

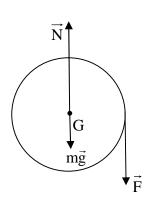
$$\begin{array}{l} 1u = 931,5 \; MeV/c^2 \; = 1,66 \times 10^{-27} \, kg \; ; \\ Planck's \; constant: \; h = 6,63 \times 10^{-34} \; J.s \; ; \\ 1eV = 1,6 \; 10^{-19} J \; ; \\ c = 3 \times 10^8 \; m/s \; . \end{array}$$

First exercise. (7pts)

A- 1) a – The weight $m\vec{g}$, the reaction \vec{N} and the force \vec{F}



$$\mathbf{c} - \frac{d\sigma}{dt} = I_0 \ddot{\theta} = \mathbf{M} \Longrightarrow \ddot{\theta} = \frac{\mathbf{M}}{I_0} = \text{cte and } \dot{\theta}_0 = 0 \Rightarrow \text{Motion is }$$
 uniformly accelerated.



2) a.
$$\frac{d\sigma}{dt} = M \Rightarrow \sigma = Mt + \sigma_0 \quad \sigma_0 = I_0 \theta_0 = 0 \Rightarrow \sigma = Mt$$

$$I_0\theta' = Mt \Rightarrow I_0 = \frac{Mt}{\theta'} = \frac{0.2 \times 5}{2 \times \pi \times 80} = 2 \times 10^{-3} \, \text{Kgm}^2$$

B-1) M.E=
$$\frac{1}{2}$$
 I θ'^2 - mgR cos θ

$$2) \qquad \frac{dME}{dt} = 0 \Rightarrow I \; \theta'\theta'' + mg \; R\theta' sin\theta = 0 \qquad or \; sin\theta = \theta \; \Rightarrow \theta'' + mg \frac{R}{I} \theta \; = 0 \qquad \boxed{1}$$

3)
$$\omega^2 = \frac{mgR}{I} \Rightarrow T = 2 \pi \sqrt{\frac{I}{mgR}} \sqrt{\frac{1/2}{1/2}}$$

4)
$$T = \frac{7.7}{10} = 0.77 \text{ s}$$
 thus:

$$I = \frac{T^2 mgR}{4\pi^2} = \frac{(0.77)^2 \times 0.4 \times 10 \times 0.1 \times (0.32)^2}{4} = 6.07 \times 10^{-3} \text{ kgm}^2 \quad \boxed{1}$$

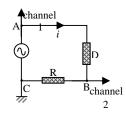
5) The relation
$$I = I_0 + mR^2$$
 gives $I_0 = 6 \times 10^{-3} - 0.4 (0.1)^2 = 2 \times 10^{-3} \text{ kgm}^2$.

Second exercises (7 pts)

1) connections

_{2) a-}
$$\omega = 100\pi = \frac{2\pi}{T} \Rightarrow T = 2 \times 10^{-2} \text{ s} = 20 \text{ms}$$
 (1/2)

b- T corresponds to 4 div ; thus 4 div \Rightarrow 2×10^{-2} s \Rightarrow 1 div. Corresponds to 5 ms => $S_h = 5$ ms/div



3)
$$a_{-}$$
 $i = \frac{u_{BC}}{R}$. Then i is the image of u_{BC} (1/2)

b-(D) is a capacitor since the current i leads the voltage u_{AC}

4) a-
$$|\varphi| = \frac{2\pi \times 0.5}{4} = \frac{\pi}{4} \text{rad}$$
; $u_{BC \text{ leads}} u_{AC \text{ by }} \frac{\pi}{4} \text{rad}$

$$\mathbf{b} \text{-} \ U_{mR} = 2 \ \text{div} \times 2 \ \text{V/div} = 4 \ \text{V} \Rightarrow I_m = \frac{U_{mR}}{R} = \frac{4}{40} = 0.1 A \quad \boxed{34}$$

$$i = 0.1\cos(100\pi t + \frac{\pi}{4})$$
 (1/2)

$$i = C \frac{du_{AB}}{dt} \Rightarrow u_{AB} = \frac{1}{C} \int i dt = \frac{0.1}{100\pi C} \sin(100\pi t + \frac{\pi}{4})$$

6)
$$u_{AC} = u_{AB} + u_{BC} \Rightarrow$$

$$4\sqrt{2} \cos(100\pi t) = \frac{0.1}{100\pi C} \sin(100\pi t + \frac{\pi}{4}) + 4\cos(100\pi t + \pi/4)$$

For
$$t = 0$$
: $4\sqrt{2} = \frac{0.1}{100\pi C} \frac{\sqrt{2}}{2} + 4\frac{\sqrt{2}}{2} \Rightarrow C = 80\mu F$

Third exercies (6 ½ pts)

A- 1) The two sources are synchronous

2) The coherence

(1/4	
/	/ -	Ι

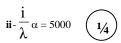
3) since the sources are synchronous and coherent (or coherent)

B-I – 1-a)Table

/	$\overline{}$
1	1/
l	1/4
\	

λ (innm)	470	496	520	580	610
5 i	11.75	12.40	13.00	14.50	15.25
(in mm)					
i (in mm)	2,35	2,48	2,60	2.90	3.05

b) i- $\frac{i}{\lambda} = \frac{2.35 \times 10^6}{470} = \frac{3.05 \times 10^6}{610} = \dots = 5000 = \text{ positive constant}$



- iii- $i = \frac{\lambda D}{a} \Rightarrow \frac{i}{\lambda} = \alpha = 5000$ (3/4)
 - 2) The relation $i = \frac{\lambda D}{a}$ allows aus to write: $\frac{i_1}{i_2} = \frac{D_1}{D_2}$. Thus $\frac{2,48}{3.72} = \frac{D}{D+0.5}$ $\Rightarrow D = 1 \text{ m}$
- 3) $b = 5000 = \frac{D}{a} = \frac{1}{a} \Rightarrow a = 0.2 \text{ mm}$
- II-1) $\lambda_{air} = \frac{c}{f}$; $\lambda_{water} = \frac{V}{f} \Rightarrow \frac{\lambda_{water}}{\lambda_{air}} = \frac{V}{c} = \frac{1}{n} \Rightarrow \lambda_{water} < \lambda_{air}$.

- 2) i is proprtional to λ ; upon passing from air to water, the wavelength decreases, this leads to a decrease in the interfringe distance i and the system of fringes seems closer
 - 3) $i_{\text{water}} = 1.95 \text{ mm}$; $\frac{i_{water}}{i_{air}} = \frac{\lambda_{water}}{\lambda_{air}} = \frac{1}{n}$; thus $\frac{1.95}{2.6} = \frac{1}{n}$, We get: n = 1.33

Fourth exercise (7 pts)

- A- Conservation of mass number: $98 + A = 99 + 1 \Rightarrow A = 2$ Conservation of charge number: $42 + Z = 43 \Rightarrow Z = 1$.
- B- 1) $^{98}_{42}$ Mo $\xrightarrow{}$ $^{99}_{43}$ Tc + $^{0}_{1}$ e + $^{0}_{0}$ $^{1/2}_{2}$ 2) $\Delta m = m_{before}$ - $m_{after} = 98.88437$ - 98.88235 - 55×10^{5} = 1.47×10^{3} u $^{1/2}_{2}$

 $E = \Delta m c^2 = 1,47 \times 10^3 \times 931.5 \text{MeV}/c^2 \times c^2 = 1.37 \text{ MeV}$ (3/4)

- 3) a- i) ${}^{99}_{43}\text{Tc}^*$ \longrightarrow ${}^{99}_{43}\text{Tc} + (1/2)$
 - ii) Electromagnetic (1/4)
 - **b-i)** The conservation of total energy gives :

$$\begin{aligned} & \text{m(} \frac{99}{43} \, \text{Tc}^*\text{)} c^2 + \text{E}^*\text{c} = \text{m(} \frac{99}{43} \, \text{Tc)} \, c^2 + \text{Ec} + \text{E(}\gamma\text{)} \Rightarrow \text{m(} \frac{99}{43} \, \text{Tc}^*\text{)} c^2 = \text{m(} \frac{99}{43} \, \text{Tc)} \, c^2 + \text{E(}\gamma\text{)} \\ & \Rightarrow \text{m(} \frac{99}{43} \, \text{Tc}^*\text{)} = \text{m(} \frac{99}{43} \, \text{Tc)} + \frac{\text{E(}\gamma\text{)}}{\text{c}^2} = 98.88235 \, \text{u} + \frac{0.14 \, \text{MeV} \, / \, \text{c}^2}{931.5} \, \text{u} = 98.88250 \, \text{u} \end{aligned}$$

ii)
$$E_1 = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{E_1} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{0.14 \times 1.60 \times 10^{-13}} = 8.88 \times 10^{-12} \text{ m}$$

- C- 1) The molybdenum 99 has a half-life 10 times longer than that of technetium 99, it thus lasts stored for a longer time
 - 2) The number of nuclei of ${}^{99}_{42}MO$ at the instant $t_0=0$ is :

$$N_{o} = \frac{10^{24}}{1.66 \times 98.88437} = 6.09 \times 10^{21} \, \text{nuclei} \underbrace{1/2}_{\text{the number of }} \underbrace{^{99}_{42} \, \text{Mo}}_{\text{nuclei at the instant } t = 24 \, \text{h is}}_{\text{42}}$$

$$N = N_0 e^{\lambda t} = 6.09_{\times} 10^{21} e^{\frac{0.693 \times 24}{67}} = 4.75_{\times} 10^{21} \text{nuclei}$$
 (1/2)

The number of technetium nuclei obtained at the end of 24 hours is: $N_0 - N = 1.34 \times 10^{21}$ nuclei

The mass of Tc is: $1.34 \times 10^{21} \times 98.88235 \times 1.66 \cdot 10^{-27} = 0.22 \text{ g}$